agent
Class info¶
Classes¶
| Name | Children | Inherits |
|---|---|---|
| AGUIAgent llmling_agent.agent.agui_agent MessageNode that wraps a remote AG-UI protocol server. |
||
| Agent llmling_agent.agent.agent The main agent class. |
||
| AgentContext llmling_agent.agent.context Runtime context for agent execution. |
||
| Interactions llmling_agent.agent.interactions Manages agent communication patterns. |
||
| MessageHistory llmling_agent.agent.conversation Manages conversation state and system prompts. |
||
| SlashedAgent llmling_agent.agent.slashed_agent Wrapper around Agent that handles slash commands in streams. |
||
| SystemPrompts llmling_agent.agent.sys_prompts Manages system prompts for an agent. |
🛈 DocStrings¶
CLI commands for llmling-agent.
AGUIAgent
¶
Bases: MessageNode[TDeps, str]
MessageNode that wraps a remote AG-UI protocol server.
Connects to AG-UI compatible endpoints via HTTP/SSE and provides the same interface as native agents, enabling composition with other nodes via connections, teams, etc.
The agent manages: - HTTP client lifecycle (create on enter, close on exit) - AG-UI protocol communication via SSE streams - Event conversion to native llmling-agent events - Message accumulation and final response generation
Supports both blocking run() and streaming run_stream() execution modes.
Example
# Connect to existing server
async with AGUIAgent(
endpoint="http://localhost:8000/agent/run",
name="remote-agent"
) as agent:
result = await agent.run("Hello, world!")
async for event in agent.run_stream("Tell me a story"):
print(event)
# Start server automatically (useful for testing)
async with AGUIAgent(
endpoint="http://localhost:8000/agent/run",
name="test-agent",
startup_command="ag ui agent config.yml",
startup_delay=2.0,
) as agent:
result = await agent.run("Test prompt")
Source code in src/llmling_agent/agent/agui_agent.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 | |
__aenter__
async
¶
__aenter__() -> Self
Enter async context - initialize client and base resources.
Source code in src/llmling_agent/agent/agui_agent.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | |
__aexit__
async
¶
__aexit__(
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None
Exit async context - cleanup client and base resources.
Source code in src/llmling_agent/agent/agui_agent.py
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 | |
__init__
¶
__init__(
endpoint: str,
*,
name: str = "agui-agent",
description: str | None = None,
display_name: str | None = None,
timeout: float = 60.0,
headers: dict[str, str] | None = None,
startup_command: str | None = None,
startup_delay: float = 2.0,
mcp_servers: Sequence[str | MCPServerConfig] | None = None,
agent_pool: AgentPool[Any] | None = None,
enable_logging: bool = True,
event_configs: Sequence[EventConfig] | None = None,
event_handlers: Sequence[IndividualEventHandler] | None = None
) -> None
Initialize AG-UI agent client.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
endpoint
|
str
|
HTTP endpoint for the AG-UI agent |
required |
name
|
str
|
Agent name for identification |
'agui-agent'
|
description
|
str | None
|
Agent description |
None
|
display_name
|
str | None
|
Human-readable display name |
None
|
timeout
|
float
|
Request timeout in seconds |
60.0
|
headers
|
dict[str, str] | None
|
Additional HTTP headers |
None
|
startup_command
|
str | None
|
Optional shell command to start server automatically. Useful for testing - server lifecycle is managed by the agent. Example: "ag ui agent config.yml" |
None
|
startup_delay
|
float
|
Seconds to wait after starting server before connecting (default: 2.0) |
2.0
|
mcp_servers
|
Sequence[str | MCPServerConfig] | None
|
MCP servers to connect |
None
|
agent_pool
|
AgentPool[Any] | None
|
Agent pool for multi-agent coordination |
None
|
enable_logging
|
bool
|
Whether to enable database logging |
True
|
event_configs
|
Sequence[EventConfig] | None
|
Event trigger configurations |
None
|
event_handlers
|
Sequence[IndividualEventHandler] | None
|
Sequence of event handlers to register |
None
|
Source code in src/llmling_agent/agent/agui_agent.py
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | |
get_stats
async
¶
get_stats() -> MessageStats
Get message statistics for this node.
Source code in src/llmling_agent/agent/agui_agent.py
609 610 611 | |
run
async
¶
run(
*prompts: PromptCompatible,
message_id: str | None = None,
message_history: MessageHistory | None = None,
**kwargs: Any
) -> ChatMessage[str]
Execute prompt against AG-UI agent.
Sends the prompt to the AG-UI server and waits for completion. Events are collected and the final text content is returned as a ChatMessage.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompts
|
PromptCompatible
|
Prompts to send (will be joined with spaces) |
()
|
message_id
|
str | None
|
Optional message id for the returned message |
None
|
message_history
|
MessageHistory | None
|
Optional MessageHistory to use instead of agent's own |
None
|
**kwargs
|
Any
|
Additional arguments (ignored for compatibility) |
{}
|
Returns:
| Type | Description |
|---|---|
ChatMessage[str]
|
ChatMessage containing the agent's aggregated text response |
Source code in src/llmling_agent/agent/agui_agent.py
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 | |
run_iter
async
¶
run_iter(
*prompt_groups: Sequence[PromptCompatible], message_id: str | None = None, **kwargs: Any
) -> AsyncIterator[ChatMessage[str]]
Execute multiple prompt groups sequentially.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_groups
|
Sequence[PromptCompatible]
|
Groups of prompts to execute |
()
|
message_id
|
str | None
|
Optional message ID base |
None
|
**kwargs
|
Any
|
Additional arguments (ignored for compatibility) |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncIterator[ChatMessage[str]]
|
ChatMessage for each completed prompt group |
Source code in src/llmling_agent/agent/agui_agent.py
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 | |
run_stream
async
¶
run_stream(
*prompts: PromptCompatible,
message_id: str | None = None,
message_history: MessageHistory | None = None,
**kwargs: Any
) -> AsyncIterator[RichAgentStreamEvent[str]]
Execute prompt with streaming events.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompts
|
PromptCompatible
|
Prompts to send |
()
|
message_id
|
str | None
|
Optional message ID |
None
|
message_history
|
MessageHistory | None
|
Optional MessageHistory to use instead of agent's own |
None
|
**kwargs
|
Any
|
Additional arguments (ignored for compatibility) |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncIterator[RichAgentStreamEvent[str]]
|
Native streaming events converted from AG-UI protocol |
Source code in src/llmling_agent/agent/agui_agent.py
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | |
to_tool
¶
to_tool(description: str | None = None) -> Callable[[str], Any]
Convert agent to a callable tool.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
description
|
str | None
|
Tool description |
None
|
Returns:
| Type | Description |
|---|---|
Callable[[str], Any]
|
Async function that can be used as a tool |
Source code in src/llmling_agent/agent/agui_agent.py
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 | |
Agent
¶
Bases: MessageNode[TDeps, OutputDataT]
The main agent class.
Generically typed with: LLMLingAgent[Type of Dependencies, Type of Result]
Source code in src/llmling_agent/agent/agent.py
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 | |
AgentReset
dataclass
¶
Emitted when agent is reset.
Source code in src/llmling_agent/agent/agent.py
121 122 123 124 125 126 127 128 | |
__aenter__
async
¶
__aenter__() -> Self
Enter async context and set up MCP servers.
Source code in src/llmling_agent/agent/agent.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 | |
__aexit__
async
¶
__aexit__(
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None
Exit async context.
Source code in src/llmling_agent/agent/agent.py
335 336 337 338 339 340 341 342 | |
__and__
¶
__and__(other: MessageNode[Any, Any] | ProcessorCallback[Any]) -> Team[Any]
Create sequential team using & operator.
Example
group = analyzer & planner & executor # Create group of 3 group = analyzer & existing_group # Add to existing group
Source code in src/llmling_agent/agent/agent.py
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 | |
__init__
¶
__init__(
name: str = "llmling-agent",
*,
deps_type: type[TDeps] | None = None,
model: ModelType = None,
output_type: OutputSpec[OutputDataT] = str,
session: SessionIdType | SessionQuery | MemoryConfig | bool | int = None,
system_prompt: AnyPromptType | Sequence[AnyPromptType] = (),
description: str | None = None,
display_name: str | None = None,
tools: Sequence[ToolType | Tool] | None = None,
toolsets: Sequence[ResourceProvider] | None = None,
mcp_servers: Sequence[str | MCPServerConfig] | None = None,
resources: Sequence[PromptType | str] = (),
skills_paths: Sequence[JoinablePathLike] | None = None,
retries: int = 1,
output_retries: int | None = None,
end_strategy: EndStrategy = "early",
input_provider: InputProvider | None = None,
parallel_init: bool = True,
debug: bool = False,
event_handlers: Sequence[IndividualEventHandler] | None = None,
agent_pool: AgentPool[Any] | None = None,
tool_mode: ToolMode | None = None,
knowledge: Knowledge | None = None,
agent_config: AgentConfig | None = None,
env: ExecutionEnvironment | None = None
) -> None
Initialize agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Identifier for the agent (used for logging and lookups) |
'llmling-agent'
|
deps_type
|
type[TDeps] | None
|
Type of dependencies to use |
None
|
model
|
ModelType
|
The default model to use (defaults to GPT-5) |
None
|
output_type
|
OutputSpec[OutputDataT]
|
The default output type to use (defaults to str) |
str
|
context
|
Agent context with configuration |
required | |
session
|
SessionIdType | SessionQuery | MemoryConfig | bool | int
|
Memory configuration. - None: Default memory config - False: Disable message history (max_messages=0) - int: Max tokens for memory - str/UUID: Session identifier - MemoryConfig: Full memory configuration - MemoryProvider: Custom memory provider - SessionQuery: Session query |
None
|
system_prompt
|
AnyPromptType | Sequence[AnyPromptType]
|
System prompts for the agent |
()
|
description
|
str | None
|
Description of the Agent ("what it can do") |
None
|
display_name
|
str | None
|
Human-readable display name (falls back to name) |
None
|
tools
|
Sequence[ToolType | Tool] | None
|
List of tools to register with the agent |
None
|
toolsets
|
Sequence[ResourceProvider] | None
|
List of toolset resource providers for the agent |
None
|
mcp_servers
|
Sequence[str | MCPServerConfig] | None
|
MCP servers to connect to |
None
|
resources
|
Sequence[PromptType | str]
|
Additional resources to load |
()
|
skills_paths
|
Sequence[JoinablePathLike] | None
|
Local directories to search for agent-specific skills |
None
|
retries
|
int
|
Default number of retries for failed operations |
1
|
output_retries
|
int | None
|
Max retries for result validation (defaults to retries) |
None
|
end_strategy
|
EndStrategy
|
Strategy for handling tool calls that are requested alongside a final result |
'early'
|
input_provider
|
InputProvider | None
|
Provider for human input (tool confirmation / HumanProviders) |
None
|
parallel_init
|
bool
|
Whether to initialize resources in parallel |
True
|
debug
|
bool
|
Whether to enable debug mode |
False
|
event_handlers
|
Sequence[IndividualEventHandler] | None
|
Sequence of event handlers to register with the agent |
None
|
agent_pool
|
AgentPool[Any] | None
|
AgentPool instance for managing agent resources |
None
|
tool_mode
|
ToolMode | None
|
Tool execution mode (None or "codemode") |
None
|
knowledge
|
Knowledge | None
|
Knowledge sources for this agent |
None
|
agent_config
|
AgentConfig | None
|
Agent configuration |
None
|
env
|
ExecutionEnvironment | None
|
Execution environment for code/command execution and filesystem access |
None
|
Source code in src/llmling_agent/agent/agent.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | |
from_callback
classmethod
¶
from_callback(
callback: Callable[..., Awaitable[TResult]], *, name: str | None = None, **kwargs: Any
) -> Agent[None, TResult]
from_callback(
callback: Callable[..., TResult], *, name: str | None = None, **kwargs: Any
) -> Agent[None, TResult]
from_callback(
callback: ProcessorCallback[Any], *, name: str | None = None, **kwargs: Any
) -> Agent[None, Any]
Create an agent from a processing callback.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
callback
|
ProcessorCallback[Any]
|
Function to process messages. Can be: - sync or async - with or without context - must return str for pipeline compatibility |
required |
name
|
str | None
|
Optional name for the agent |
None
|
kwargs
|
Any
|
Additional arguments for agent |
{}
|
Source code in src/llmling_agent/agent/agent.py
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 | |
get_agentlet
async
¶
get_agentlet(
tool_choice: str | list[str] | None,
model: ModelType,
output_type: type[AgentOutputType] | None,
input_provider: InputProvider | None = None,
) -> Agent[TDeps, AgentOutputType]
Create pydantic-ai agent from current state.
Source code in src/llmling_agent/agent/agent.py
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 | |
get_stats
async
¶
get_stats() -> MessageStats
Get message statistics (async version).
Source code in src/llmling_agent/agent/agent.py
1097 1098 1099 1100 | |
is_busy
¶
is_busy() -> bool
Check if agent is currently processing tasks.
Source code in src/llmling_agent/agent/agent.py
486 487 488 | |
register_worker
¶
register_worker(
worker: MessageNode[Any, Any],
*,
name: str | None = None,
reset_history_on_run: bool = True,
pass_message_history: bool = False
) -> Tool
Register another agent as a worker tool.
Source code in src/llmling_agent/agent/agent.py
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 | |
reset
async
¶
reset() -> None
Reset agent state (conversation history and tool states).
Source code in src/llmling_agent/agent/agent.py
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 | |
run
async
¶
run(
*prompts: PromptCompatible | ChatMessage[Any],
output_type: None = None,
model: ModelType = None,
store_history: bool = True,
tool_choice: str | list[str] | None = None,
usage_limits: UsageLimits | None = None,
message_id: str | None = None,
conversation_id: str | None = None,
message_history: MessageHistory | None = None,
deps: TDeps | None = None,
input_provider: InputProvider | None = None,
wait_for_connections: bool | None = None,
instructions: str | None = None
) -> ChatMessage[OutputDataT]
run(
*prompts: PromptCompatible | ChatMessage[Any],
output_type: type[OutputTypeT],
model: ModelType = None,
store_history: bool = True,
tool_choice: str | list[str] | None = None,
usage_limits: UsageLimits | None = None,
message_id: str | None = None,
conversation_id: str | None = None,
message_history: MessageHistory | None = None,
deps: TDeps | None = None,
input_provider: InputProvider | None = None,
wait_for_connections: bool | None = None,
instructions: str | None = None
) -> ChatMessage[OutputTypeT]
run(
*prompts: PromptCompatible | ChatMessage[Any],
output_type: type[Any] | None = None,
model: ModelType = None,
store_history: bool = True,
tool_choice: str | list[str] | None = None,
usage_limits: UsageLimits | None = None,
message_id: str | None = None,
conversation_id: str | None = None,
message_history: MessageHistory | None = None,
deps: TDeps | None = None,
input_provider: InputProvider | None = None,
wait_for_connections: bool | None = None,
instructions: str | None = None
) -> ChatMessage[Any]
Run agent with prompt and get response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompts
|
PromptCompatible | ChatMessage[Any]
|
User query or instruction |
()
|
output_type
|
type[Any] | None
|
Optional type for structured responses |
None
|
model
|
ModelType
|
Optional model override |
None
|
store_history
|
bool
|
Whether the message exchange should be added to the context window |
True
|
tool_choice
|
str | list[str] | None
|
Filter tool choice by name |
None
|
usage_limits
|
UsageLimits | None
|
Optional usage limits for the model |
None
|
message_id
|
str | None
|
Optional message id for the returned message. Automatically generated if not provided. |
None
|
conversation_id
|
str | None
|
Optional conversation id for the returned message. |
None
|
messages
|
Optional list of messages to replace the conversation history |
required | |
message_history
|
MessageHistory | None
|
Optional MessageHistory object to use instead of agent's own conversation |
None
|
deps
|
TDeps | None
|
Optional dependencies for the agent |
None
|
input_provider
|
InputProvider | None
|
Optional input provider for the agent |
None
|
wait_for_connections
|
bool | None
|
Whether to wait for connected agents to complete |
None
|
instructions
|
str | None
|
Optional instructions to override the agent's system prompt |
None
|
Returns:
| Type | Description |
|---|---|
ChatMessage[Any]
|
Result containing response and run information |
Raises:
| Type | Description |
|---|---|
UnexpectedModelBehavior
|
If the model fails or behaves unexpectedly |
Source code in src/llmling_agent/agent/agent.py
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 | |
run_in_background
async
¶
run_in_background(
*prompt: PromptCompatible, max_count: int | None = None, interval: float = 1.0, **kwargs: Any
) -> Task[ChatMessage[OutputDataT] | None]
Run agent continuously in background with prompt or dynamic prompt function.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
PromptCompatible
|
Static prompt or function that generates prompts |
()
|
max_count
|
int | None
|
Maximum number of runs (None = infinite) |
None
|
interval
|
float
|
Seconds between runs |
1.0
|
**kwargs
|
Any
|
Arguments passed to run() |
{}
|
Source code in src/llmling_agent/agent/agent.py
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 | |
run_iter
async
¶
run_iter(
*prompt_groups: Sequence[PromptCompatible],
output_type: type[OutputDataT] | None = None,
model: ModelType = None,
store_history: bool = True,
wait_for_connections: bool | None = None
) -> AsyncIterator[ChatMessage[OutputDataT]]
Run agent sequentially on multiple prompt groups.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt_groups
|
Sequence[PromptCompatible]
|
Groups of prompts to process sequentially |
()
|
output_type
|
type[OutputDataT] | None
|
Optional type for structured responses |
None
|
model
|
ModelType
|
Optional model override |
None
|
store_history
|
bool
|
Whether to store in conversation history |
True
|
wait_for_connections
|
bool | None
|
Whether to wait for connected agents |
None
|
Yields:
| Type | Description |
|---|---|
AsyncIterator[ChatMessage[OutputDataT]]
|
Response messages in sequence |
Example
questions = [ ["What is your name?"], ["How old are you?", image1], ["Describe this image", image2], ] async for response in agent.run_iter(*questions): print(response.content)
Source code in src/llmling_agent/agent/agent.py
859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 | |
run_job
async
¶
run_job(
job: Job[TDeps, str | None], *, store_history: bool = True, include_agent_tools: bool = True
) -> ChatMessage[OutputDataT]
Execute a pre-defined task.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
job
|
Job[TDeps, str | None]
|
Job configuration to execute |
required |
store_history
|
bool
|
Whether the message exchange should be added to the context window |
True
|
include_agent_tools
|
bool
|
Whether to include agent tools |
True
|
Returns: Job execution result
Raises:
| Type | Description |
|---|---|
JobError
|
If task execution fails |
ValueError
|
If task configuration is invalid |
Source code in src/llmling_agent/agent/agent.py
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 | |
run_stream
async
¶
run_stream(
*prompt: PromptCompatible,
output_type: type[OutputDataT] | None = None,
model: ModelType = None,
tool_choice: str | list[str] | None = None,
store_history: bool = True,
usage_limits: UsageLimits | None = None,
message_id: str | None = None,
conversation_id: str | None = None,
messages: list[ChatMessage[Any]] | None = None,
input_provider: InputProvider | None = None,
wait_for_connections: bool | None = None,
deps: TDeps | None = None,
instructions: str | None = None
) -> AsyncIterator[RichAgentStreamEvent[OutputDataT]]
Run agent with prompt and get a streaming response.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
PromptCompatible
|
User query or instruction |
()
|
output_type
|
type[OutputDataT] | None
|
Optional type for structured responses |
None
|
model
|
ModelType
|
Optional model override |
None
|
tool_choice
|
str | list[str] | None
|
Filter tool choice by name |
None
|
store_history
|
bool
|
Whether the message exchange should be added to the context window |
True
|
usage_limits
|
UsageLimits | None
|
Optional usage limits for the model |
None
|
message_id
|
str | None
|
Optional message id for the returned message. Automatically generated if not provided. |
None
|
conversation_id
|
str | None
|
Optional conversation id for the returned message. |
None
|
messages
|
list[ChatMessage[Any]] | None
|
Optional list of messages to replace the conversation history |
None
|
input_provider
|
InputProvider | None
|
Optional input provider for the agent |
None
|
wait_for_connections
|
bool | None
|
Whether to wait for connected agents to complete |
None
|
deps
|
TDeps | None
|
Optional dependencies for the agent |
None
|
instructions
|
str | None
|
Optional instructions to override the agent's system prompt |
None
|
Returns: An async iterator yielding streaming events with final message embedded.
Raises:
| Type | Description |
|---|---|
UnexpectedModelBehavior
|
If the model fails or behaves unexpectedly |
Source code in src/llmling_agent/agent/agent.py
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 | |
set_model
¶
set_model(model: ModelType) -> None
Set the model for this agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
ModelType
|
New model to use (name or instance) |
required |
Source code in src/llmling_agent/agent/agent.py
1074 1075 1076 1077 1078 1079 1080 1081 | |
share
async
¶
share(
target: Agent[TDeps, Any],
*,
tools: list[str] | None = None,
history: bool | int | None = None,
token_limit: int | None = None
) -> None
Share capabilities and knowledge with another agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
target
|
Agent[TDeps, Any]
|
Agent to share with |
required |
tools
|
list[str] | None
|
List of tool names to share |
None
|
history
|
bool | int | None
|
Share conversation history: - True: Share full history - int: Number of most recent messages to share - None: Don't share history |
None
|
token_limit
|
int | None
|
Optional max tokens for history |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If requested items don't exist |
RuntimeError
|
If runtime not available for resources |
Source code in src/llmling_agent/agent/agent.py
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 | |
stop
async
¶
stop() -> None
Stop continuous execution if running.
Source code in src/llmling_agent/agent/agent.py
998 999 1000 1001 1002 1003 | |
temporary_state
async
¶
temporary_state(
*,
system_prompts: list[AnyPromptType] | None = None,
output_type: type[T] | None = None,
replace_prompts: bool = False,
tools: list[ToolType] | None = None,
replace_tools: bool = False,
history: list[AnyPromptType] | SessionQuery | None = None,
replace_history: bool = False,
pause_routing: bool = False,
model: ModelType | None = None
) -> AsyncIterator[Self | Agent[T]]
Temporarily modify agent state.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
system_prompts
|
list[AnyPromptType] | None
|
Temporary system prompts to use |
None
|
output_type
|
type[T] | None
|
Temporary output type to use |
None
|
replace_prompts
|
bool
|
Whether to replace existing prompts |
False
|
tools
|
list[ToolType] | None
|
Temporary tools to make available |
None
|
replace_tools
|
bool
|
Whether to replace existing tools |
False
|
history
|
list[AnyPromptType] | SessionQuery | None
|
Conversation history (prompts or query) |
None
|
replace_history
|
bool
|
Whether to replace existing history |
False
|
pause_routing
|
bool
|
Whether to pause message routing |
False
|
model
|
ModelType | None
|
Temporary model override |
None
|
Source code in src/llmling_agent/agent/agent.py
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 | |
to_structured
¶
to_structured(
output_type: type[NewOutputDataT],
*,
tool_name: str | None = None,
tool_description: str | None = None
) -> Agent[TDeps, NewOutputDataT]
Convert this agent to a structured agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_type
|
type[NewOutputDataT]
|
Type for structured responses. Can be: - A Python type (Pydantic model) |
required |
tool_name
|
str | None
|
Optional override for result tool name |
None
|
tool_description
|
str | None
|
Optional override for result tool description |
None
|
Returns:
| Type | Description |
|---|---|
Agent[TDeps, NewOutputDataT]
|
Typed Agent |
Source code in src/llmling_agent/agent/agent.py
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | |
to_tool
¶
to_tool(
*,
name: str | None = None,
reset_history_on_run: bool = True,
pass_message_history: bool = False,
parent: Agent[Any, Any] | None = None
) -> Tool[OutputDataT]
Create a tool from this agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str | None
|
Optional tool name override |
None
|
reset_history_on_run
|
bool
|
Clear agent's history before each run |
True
|
pass_message_history
|
bool
|
Pass parent's message history to agent |
False
|
parent
|
Agent[Any, Any] | None
|
Optional parent agent for history/context sharing |
None
|
Source code in src/llmling_agent/agent/agent.py
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | |
validate_against
async
¶
validate_against(prompt: str, criteria: type[OutputDataT], **kwargs: Any) -> bool
Check if agent's response satisfies stricter criteria.
Source code in src/llmling_agent/agent/agent.py
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 | |
wait
async
¶
wait() -> ChatMessage[OutputDataT]
Wait for background execution to complete.
Source code in src/llmling_agent/agent/agent.py
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 | |
AgentContext
dataclass
¶
Bases: NodeContext[TDeps]
Runtime context for agent execution.
Generically typed with AgentContext[Type of Dependencies]
Source code in src/llmling_agent/agent/context.py
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 | |
tool_call_id
class-attribute
instance-attribute
¶
tool_call_id: str | None = None
ID of the current tool call.
tool_input
class-attribute
instance-attribute
¶
tool_input: dict[str, Any] = field(default_factory=dict)
Input arguments for the current tool call.
tool_name
class-attribute
instance-attribute
¶
tool_name: str | None = None
Name of the currently executing tool.
handle_confirmation
async
¶
handle_confirmation(tool: Tool, args: dict[str, Any]) -> ConfirmationResult
Handle tool execution confirmation.
Returns True if: - No confirmation handler is set - Handler confirms the execution
Source code in src/llmling_agent/agent/context.py
52 53 54 55 56 57 58 59 60 61 62 63 64 | |
handle_elicitation
async
¶
handle_elicitation(params: ElicitRequestParams) -> ElicitResult | ErrorData
Handle elicitation request for additional information.
Source code in src/llmling_agent/agent/context.py
66 67 68 69 70 71 72 | |
report_progress
async
¶
report_progress(progress: float, total: float | None, message: str) -> None
Report progress by emitting event into the agent's stream.
Source code in src/llmling_agent/agent/context.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 | |
Interactions
¶
Manages agent communication patterns.
Source code in src/llmling_agent/agent/interactions.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | |
extract
async
¶
extract(text: str, as_type: type[T], *, prompt: AnyPromptType | None = None) -> T
Extract single instance of type from text.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to extract from |
required |
as_type
|
type[T]
|
Type to extract |
required |
prompt
|
AnyPromptType | None
|
Optional custom prompt |
None
|
Source code in src/llmling_agent/agent/interactions.py
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 | |
extract_multiple
async
¶
extract_multiple(
text: str,
as_type: type[T],
*,
min_items: int = 1,
max_items: int | None = None,
prompt: AnyPromptType | None = None
) -> list[T]
Extract multiple instances of type from text.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
text
|
str
|
Text to extract from |
required |
as_type
|
type[T]
|
Type to extract |
required |
min_items
|
int
|
Minimum number of instances to extract |
1
|
max_items
|
int | None
|
Maximum number of instances (None=unlimited) |
None
|
prompt
|
AnyPromptType | None
|
Optional custom prompt |
None
|
Source code in src/llmling_agent/agent/interactions.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 | |
pick
async
¶
pick(
selections: AgentPool, task: str, prompt: AnyPromptType | None = None
) -> Pick[Agent[Any, Any]]
pick(
selections: BaseTeam[Any, Any], task: str, prompt: AnyPromptType | None = None
) -> Pick[MessageNode[Any, Any]]
pick(
selections: Sequence[T] | Mapping[str, T], task: str, prompt: AnyPromptType | None = None
) -> Pick[T]
pick(
selections: Sequence[T] | Mapping[str, T] | AgentPool | BaseTeam[Any, Any],
task: str,
prompt: AnyPromptType | None = None,
) -> Pick[T]
Pick from available options with reasoning.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
selections
|
Sequence[T] | Mapping[str, T] | AgentPool | BaseTeam[Any, Any]
|
What to pick from: - Sequence of items (auto-labeled) - Dict mapping labels to items - AgentPool - Team |
required |
task
|
str
|
Task/decision description |
required |
prompt
|
AnyPromptType | None
|
Optional custom selection prompt |
None
|
Returns:
| Type | Description |
|---|---|
Pick[T]
|
Decision with selected item and reasoning |
Raises:
| Type | Description |
|---|---|
ValueError
|
If no choices available or invalid selection |
Source code in src/llmling_agent/agent/interactions.py
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 | |
pick_multiple
async
¶
pick_multiple(
selections: BaseTeam[Any, Any],
task: str,
*,
min_picks: int = 1,
max_picks: int | None = None,
prompt: AnyPromptType | None = None
) -> MultiPick[MessageNode[Any, Any]]
pick_multiple(
selections: AgentPool,
task: str,
*,
min_picks: int = 1,
max_picks: int | None = None,
prompt: AnyPromptType | None = None
) -> MultiPick[Agent[Any, Any]]
pick_multiple(
selections: Sequence[T] | Mapping[str, T],
task: str,
*,
min_picks: int = 1,
max_picks: int | None = None,
prompt: AnyPromptType | None = None
) -> MultiPick[T]
pick_multiple(
selections: Sequence[T] | Mapping[str, T] | AgentPool | BaseTeam[Any, Any],
task: str,
*,
min_picks: int = 1,
max_picks: int | None = None,
prompt: AnyPromptType | None = None
) -> MultiPick[T]
Pick multiple options from available choices.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
selections
|
Sequence[T] | Mapping[str, T] | AgentPool | BaseTeam[Any, Any]
|
What to pick from |
required |
task
|
str
|
Task/decision description |
required |
min_picks
|
int
|
Minimum number of selections required |
1
|
max_picks
|
int | None
|
Maximum number of selections (None for unlimited) |
None
|
prompt
|
AnyPromptType | None
|
Optional custom selection prompt |
None
|
Source code in src/llmling_agent/agent/interactions.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 | |
MessageHistory
¶
Manages conversation state and system prompts.
Source code in src/llmling_agent/agent/conversation.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 | |
last_run_messages
property
¶
last_run_messages: list[ChatMessage[Any]]
Get messages from the last run converted to our format.
HistoryCleared
dataclass
¶
Emitted when chat history is cleared.
Source code in src/llmling_agent/agent/conversation.py
42 43 44 45 46 47 | |
__aenter__
async
¶
__aenter__() -> Self
Initialize when used standalone.
Source code in src/llmling_agent/agent/conversation.py
104 105 106 107 108 | |
__aexit__
async
¶
__aexit__(
exc_type: type[BaseException] | None,
exc_val: BaseException | None,
exc_tb: TracebackType | None,
) -> None
Clean up any pending messages.
Source code in src/llmling_agent/agent/conversation.py
110 111 112 113 114 115 116 117 | |
__contains__
¶
__contains__(item: Any) -> bool
Check if item is in history.
Source code in src/llmling_agent/agent/conversation.py
134 135 136 | |
__init__
¶
__init__(
storage: StorageManager | None = None,
converter: ConversionManager | None = None,
*,
messages: list[ChatMessage[Any]] | None = None,
session_config: MemoryConfig | None = None,
resources: Sequence[PromptType | str] = ()
) -> None
Initialize conversation manager.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
storage
|
StorageManager | None
|
Storage manager for persistence |
None
|
converter
|
ConversionManager | None
|
Content converter for file processing |
None
|
messages
|
list[ChatMessage[Any]] | None
|
Optional list of initial messages |
None
|
session_config
|
MemoryConfig | None
|
Optional MemoryConfig |
None
|
resources
|
Sequence[PromptType | str]
|
Optional paths to load as context |
()
|
Source code in src/llmling_agent/agent/conversation.py
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | |
__len__
¶
__len__() -> int
Get length of history.
Source code in src/llmling_agent/agent/conversation.py
138 139 140 | |
add_chat_messages
¶
add_chat_messages(messages: Sequence[ChatMessage[Any]]) -> None
Add new messages to history and update last_messages.
Source code in src/llmling_agent/agent/conversation.py
375 376 377 378 | |
add_context_from_path
async
¶
add_context_from_path(
path: JoinablePathLike, *, convert_to_md: bool = False, **metadata: Any
) -> None
Add file or URL content as context message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
path
|
JoinablePathLike
|
Any UPath-supported path |
required |
convert_to_md
|
bool
|
Whether to convert content to markdown |
False
|
**metadata
|
Any
|
Additional metadata to include with the message |
{}
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If content cannot be loaded or converted |
Source code in src/llmling_agent/agent/conversation.py
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 | |
add_context_from_prompt
async
¶
add_context_from_prompt(
prompt: PromptType, metadata: dict[str, Any] | None = None, **kwargs: Any
) -> None
Add rendered prompt content as context message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
PromptType
|
LLMling prompt (static, dynamic, or file-based) |
required |
metadata
|
dict[str, Any] | None
|
Additional metadata to include with the message |
None
|
kwargs
|
Any
|
Optional kwargs for prompt formatting |
{}
|
Source code in src/llmling_agent/agent/conversation.py
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | |
add_context_message
¶
add_context_message(content: str, source: str | None = None, **metadata: Any) -> None
Add a context message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
content
|
str
|
Text content to add |
required |
source
|
str | None
|
Description of content source |
None
|
**metadata
|
Any
|
Additional metadata to include with the message |
{}
|
Source code in src/llmling_agent/agent/conversation.py
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 | |
clear
¶
clear() -> None
Clear conversation history and prompts.
Source code in src/llmling_agent/agent/conversation.py
324 325 326 327 328 329 330 331 | |
clear_pending
¶
clear_pending() -> None
Clear pending messages without adding them to history.
Source code in src/llmling_agent/agent/conversation.py
315 316 317 | |
format_history
async
¶
format_history(
*,
max_tokens: int | None = None,
include_system: bool = False,
format_template: str | None = None,
num_messages: int | None = None
) -> str
Format conversation history as a single context message.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
max_tokens
|
int | None
|
Optional limit to include only last N tokens |
None
|
include_system
|
bool
|
Whether to include system messages |
False
|
format_template
|
str | None
|
Optional custom format (defaults to agent/message pairs) |
None
|
num_messages
|
int | None
|
Optional limit to include only last N messages |
None
|
Source code in src/llmling_agent/agent/conversation.py
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | |
get_history
¶
get_history(include_pending: bool = True, do_filter: bool = True) -> list[ChatMessage[Any]]
Get conversation history.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
include_pending
|
bool
|
Whether to include pending messages |
True
|
do_filter
|
bool
|
Whether to apply memory config limits (max_tokens, max_messages) |
True
|
Returns:
| Type | Description |
|---|---|
list[ChatMessage[Any]]
|
Filtered list of messages in chronological order |
Source code in src/llmling_agent/agent/conversation.py
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 | |
get_history_tokens
¶
get_history_tokens() -> int
Get token count for current history.
Source code in src/llmling_agent/agent/conversation.py
472 473 474 475 | |
get_initialization_tasks
¶
get_initialization_tasks() -> list[Coroutine[Any, Any, Any]]
Get all initialization coroutines.
Source code in src/llmling_agent/agent/conversation.py
99 100 101 102 | |
get_message_tokens
¶
get_message_tokens(message: ChatMessage[Any]) -> int
Get token count for a single message.
Source code in src/llmling_agent/agent/conversation.py
142 143 144 145 | |
get_pending_messages
¶
get_pending_messages() -> list[ChatMessage[Any]]
Get messages that will be included in next interaction.
Source code in src/llmling_agent/agent/conversation.py
311 312 313 | |
load_context_source
async
¶
load_context_source(source: PromptType | str) -> None
Load context from a single source.
Source code in src/llmling_agent/agent/conversation.py
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | |
load_history_from_database
¶
load_history_from_database(
session: SessionIdType | SessionQuery = None,
*,
since: datetime | None = None,
until: datetime | None = None,
roles: set[MessageRole] | None = None,
limit: int | None = None
) -> None
Load conversation history from database.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
session
|
SessionIdType | SessionQuery
|
Session ID or query config |
None
|
since
|
datetime | None
|
Only include messages after this time (override) |
None
|
until
|
datetime | None
|
Only include messages before this time (override) |
None
|
roles
|
set[MessageRole] | None
|
Only include messages with these roles (override) |
None
|
limit
|
int | None
|
Maximum number of messages to return (override) |
None
|
Source code in src/llmling_agent/agent/conversation.py
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 | |
set_history
¶
set_history(history: list[ChatMessage[Any]]) -> None
Update conversation history after run.
Source code in src/llmling_agent/agent/conversation.py
319 320 321 322 | |
temporary_state
async
¶
temporary_state(
history: list[AnyPromptType] | SessionQuery | None = None, *, replace_history: bool = False
) -> AsyncIterator[Self]
Temporarily set conversation history.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
history
|
list[AnyPromptType] | SessionQuery | None
|
Optional list of prompts to use as temporary history. Can be strings, BasePrompts, or other prompt types. |
None
|
replace_history
|
bool
|
If True, only use provided history. If False, append to existing history. |
False
|
Source code in src/llmling_agent/agent/conversation.py
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | |
SlashedAgent
¶
Wrapper around Agent that handles slash commands in streams.
Uses the "commands first" strategy from the ACP adapter: 1. Execute all slash commands first 2. Then process remaining content through wrapped agent 3. If only commands, end without LLM processing
Source code in src/llmling_agent/agent/slashed_agent.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 | |
__getattr__
¶
__getattr__(name: str) -> Any
Delegate attribute access to wrapped agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
name
|
str
|
Attribute name |
required |
Returns:
| Type | Description |
|---|---|
Any
|
Attribute value from wrapped agent |
Source code in src/llmling_agent/agent/slashed_agent.py
220 221 222 223 224 225 226 227 228 229 | |
__init__
¶
__init__(
agent: Agent[TDeps, OutputDataT] | ACPAgent | AGUIAgent,
command_store: CommandStore | None = None,
*,
context_data_factory: Callable[[], Any] | None = None
) -> None
Initialize with wrapped agent and command store.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
agent
|
Agent[TDeps, OutputDataT] | ACPAgent | AGUIAgent
|
The agent to wrap |
required |
command_store
|
CommandStore | None
|
Command store for slash commands (creates default if None) |
None
|
context_data_factory
|
Callable[[], Any] | None
|
Optional factory for creating command context data |
None
|
Source code in src/llmling_agent/agent/slashed_agent.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | |
run_stream
async
¶
run_stream(
*prompts: PromptCompatible, **kwargs: Any
) -> AsyncGenerator[SlashedAgentStreamEvent[OutputDataT]]
Run agent with slash command support.
Separates slash commands from regular prompts, executes commands first, then processes remaining content through the wrapped agent.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
*prompts
|
PromptCompatible
|
Input prompts (may include slash commands) |
()
|
**kwargs
|
Any
|
Additional arguments passed to agent.run_stream |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncGenerator[SlashedAgentStreamEvent[OutputDataT]]
|
Stream events from command execution and agent processing |
Source code in src/llmling_agent/agent/slashed_agent.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | |
SystemPrompts
¶
Manages system prompts for an agent.
Source code in src/llmling_agent/agent/sys_prompts.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
__init__
¶
__init__(
prompts: AnyPromptType | list[AnyPromptType] | None = None,
template: str | None = None,
dynamic: bool = True,
prompt_manager: PromptManager | None = None,
inject_agent_info: bool = True,
inject_tools: ToolInjectionMode = "off",
tool_usage_style: ToolUsageStyle = "suggestive",
) -> None
Initialize prompt manager.
Source code in src/llmling_agent/agent/sys_prompts.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | |
add
async
¶
add(
identifier: str,
*,
provider: str | None = None,
version: str | None = None,
variables: dict[str, Any] | None = None
) -> None
Add a system prompt.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
identifier
|
str
|
Prompt identifier/name |
required |
provider
|
str | None
|
Provider name (None = builtin) |
None
|
version
|
str | None
|
Optional version string |
None
|
variables
|
dict[str, Any] | None
|
Optional template variables |
None
|
Examples:
await sys_prompts.add("code_review", variables={"language": "python"}) await sys_prompts.add("expert", provider="langfuse", version="v2")
Source code in src/llmling_agent/agent/sys_prompts.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 | |
add_by_reference
async
¶
add_by_reference(reference: str) -> None
Add a system prompt using reference syntax.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
reference
|
str
|
[provider:]identifier[@version][?var1=val1,...] |
required |
Examples:
await sys_prompts.add_by_reference("code_review?language=python") await sys_prompts.add_by_reference("langfuse:expert@v2")
Source code in src/llmling_agent/agent/sys_prompts.py
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | |
clear
¶
clear() -> None
Clear all system prompts.
Source code in src/llmling_agent/agent/sys_prompts.py
160 161 162 | |
format_system_prompt
async
¶
format_system_prompt(agent: Agent[Any, Any]) -> str
Format complete system prompt.
Source code in src/llmling_agent/agent/sys_prompts.py
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 | |
refresh_cache
async
¶
refresh_cache() -> None
Force re-evaluation of prompts.
Source code in src/llmling_agent/agent/sys_prompts.py
164 165 166 167 168 169 170 171 172 173 | |
temporary_prompt
async
¶
temporary_prompt(prompt: AnyPromptType, exclusive: bool = False) -> AsyncIterator[None]
Temporarily override system prompts.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
AnyPromptType
|
Single prompt or sequence of prompts to use temporarily |
required |
exclusive
|
bool
|
Whether to only use given prompt. If False, prompt will be appended to the agents prompts temporarily. |
False
|
Source code in src/llmling_agent/agent/sys_prompts.py
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | |