Skip to content

models

Class info

Classes

Name Children Inherits
AgentConfig
llmling_agent.models.agents
Configuration for a single agent in the system.
    • NodeConfig
    AgentsManifest
    llmling_agent.models.manifest
    Complete agent configuration manifest defining all available agents.

      🛈 DocStrings

      Core data models for LLMling agent.

      AgentConfig

      Bases: NodeConfig

      Configuration for a single agent in the system.

      Defines an agent's complete configuration including its model, environment, capabilities, and behavior settings. Each agent can have its own: - Language model configuration - Environment setup (tools and resources) - Response type definitions - System prompts and default user prompts - Role-based capabilities

      The configuration can be loaded from YAML or created programmatically.

      Source code in src/llmling_agent/models/agents.py
       53
       54
       55
       56
       57
       58
       59
       60
       61
       62
       63
       64
       65
       66
       67
       68
       69
       70
       71
       72
       73
       74
       75
       76
       77
       78
       79
       80
       81
       82
       83
       84
       85
       86
       87
       88
       89
       90
       91
       92
       93
       94
       95
       96
       97
       98
       99
      100
      101
      102
      103
      104
      105
      106
      107
      108
      109
      110
      111
      112
      113
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      182
      183
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      296
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      class AgentConfig(NodeConfig):
          """Configuration for a single agent in the system.
      
          Defines an agent's complete configuration including its model, environment,
          capabilities, and behavior settings. Each agent can have its own:
          - Language model configuration
          - Environment setup (tools and resources)
          - Response type definitions
          - System prompts and default user prompts
          - Role-based capabilities
      
          The configuration can be loaded from YAML or created programmatically.
          """
      
          provider: ProviderConfig | ProviderName = "pydantic_ai"
          """Provider configuration or shorthand type"""
      
          inherits: str | None = None
          """Name of agent config to inherit from"""
      
          model: str | AnyModelConfig | None = None
          """The model to use for this agent. Can be either a simple model name
          string (e.g. 'openai:gpt-4') or a structured model definition."""
      
          tools: list[ToolConfig | str] = Field(default_factory=list)
          """A list of tools to register with this agent."""
      
          toolsets: list[ToolsetConfig] = Field(default_factory=list)
          """Toolset configurations for extensible tool collections."""
      
          environment: str | AgentEnvironment | None = None
          """Environments configuration (path or object)"""
      
          capabilities: Capabilities = Field(default_factory=Capabilities)
          """Current agent's capabilities."""
      
          session: str | SessionQuery | MemoryConfig | None = None
          """Session configuration for conversation recovery."""
      
          result_type: str | ResponseDefinition | None = None
          """Name of the response definition to use"""
      
          retries: int = 1
          """Number of retries for failed operations (maps to pydantic-ai's retries)"""
      
          result_tool_name: str = "final_result"
          """Name of the tool used for structured responses"""
      
          result_tool_description: str | None = None
          """Custom description for the result tool"""
      
          result_retries: int | None = None
          """Max retries for result validation"""
      
          end_strategy: EndStrategy = "early"
          """The strategy for handling multiple tool calls when a final result is found"""
      
          avatar: str | None = None
          """URL or path to agent's avatar image"""
      
          system_prompts: list[str] = Field(default_factory=list)
          """System prompts for the agent"""
      
          library_system_prompts: list[str] = Field(default_factory=list)
          """System prompts for the agent from the library"""
      
          user_prompts: list[str] = Field(default_factory=list)
          """Default user prompts for the agent"""
      
          # context_sources: list[ContextSource] = Field(default_factory=list)
          # """Initial context sources to load"""
      
          config_file_path: str | None = None
          """Config file path for resolving environment."""
      
          knowledge: Knowledge | None = None
          """Knowledge sources for this agent."""
      
          workers: list[WorkerConfig] = Field(default_factory=list)
          """Worker agents which will be available as tools."""
      
          requires_tool_confirmation: ToolConfirmationMode = "per_tool"
          """How to handle tool confirmation:
          - "always": Always require confirmation for all tools
          - "never": Never require confirmation (ignore tool settings)
          - "per_tool": Use individual tool settings
          """
      
          debug: bool = False
          """Enable debug output for this agent."""
      
          def is_structured(self) -> bool:
              """Check if this config defines a structured agent."""
              return self.result_type is not None
      
          @model_validator(mode="before")
          @classmethod
          def validate_result_type(cls, data: dict[str, Any]) -> dict[str, Any]:
              """Convert result type and apply its settings."""
              result_type = data.get("result_type")
              if isinstance(result_type, dict):
                  # Extract response-specific settings
                  tool_name = result_type.pop("result_tool_name", None)
                  tool_description = result_type.pop("result_tool_description", None)
                  retries = result_type.pop("result_retries", None)
      
                  # Convert remaining dict to ResponseDefinition
                  if "type" not in result_type:
                      result_type["type"] = "inline"
                  data["result_type"] = InlineResponseDefinition(**result_type)
      
                  # Apply extracted settings to agent config
                  if tool_name:
                      data["result_tool_name"] = tool_name
                  if tool_description:
                      data["result_tool_description"] = tool_description
                  if retries is not None:
                      data["result_retries"] = retries
      
              return data
      
          @model_validator(mode="before")
          @classmethod
          def handle_model_types(cls, data: dict[str, Any]) -> dict[str, Any]:
              """Convert model inputs to appropriate format."""
              model = data.get("model")
              match model:
                  case str():
                      data["model"] = {"type": "string", "identifier": model}
              return data
      
          async def get_toolsets(self) -> list[ResourceProvider]:
              """Get all resource providers for this agent."""
              providers: list[ResourceProvider] = []
      
              # Add providers from toolsets
              for toolset_config in self.toolsets:
                  try:
                      provider = toolset_config.get_provider()
                      providers.append(provider)
                  except Exception as e:
                      logger.exception(
                          "Failed to create provider for toolset: %r", toolset_config
                      )
                      msg = f"Failed to create provider for toolset: {e}"
                      raise ValueError(msg) from e
      
              return providers
      
          def get_tool_provider(self) -> ResourceProvider | None:
              """Get tool provider for this agent."""
              from llmling_agent.tools.base import Tool
      
              # Create provider for static tools
              if not self.tools:
                  return None
              static_tools: list[Tool] = []
              for tool_config in self.tools:
                  try:
                      match tool_config:
                          case str():
                              if tool_config.startswith("crewai_tools"):
                                  obj = import_class(tool_config)()
                                  static_tools.append(Tool.from_crewai_tool(obj))
                              elif tool_config.startswith("langchain"):
                                  obj = import_class(tool_config)()
                                  static_tools.append(Tool.from_langchain_tool(obj))
                              else:
                                  tool = Tool.from_callable(tool_config)
                                  static_tools.append(tool)
                          case BaseToolConfig():
                              static_tools.append(tool_config.get_tool())
                  except Exception:
                      logger.exception("Failed to load tool %r", tool_config)
                      continue
      
              return StaticResourceProvider(name="builtin", tools=static_tools)
      
          def get_session_config(self) -> MemoryConfig:
              """Get resolved memory configuration."""
              match self.session:
                  case str() | UUID():
                      return MemoryConfig(session=SessionQuery(name=str(self.session)))
                  case SessionQuery():
                      return MemoryConfig(session=self.session)
                  case MemoryConfig():
                      return self.session
                  case None:
                      return MemoryConfig()
      
          def get_system_prompts(self) -> list[BasePrompt]:
              """Get all system prompts as BasePrompts."""
              prompts: list[BasePrompt] = []
              for prompt in self.system_prompts:
                  match prompt:
                      case str():
                          # Convert string to StaticPrompt
                          static_prompt = StaticPrompt(
                              name="system",
                              description="System prompt",
                              messages=[PromptMessage(role="system", content=prompt)],
                          )
                          prompts.append(static_prompt)
                      case BasePrompt():
                          prompts.append(prompt)
              return prompts
      
          def get_provider(self) -> AgentProvider:
              """Get resolved provider instance.
      
              Creates provider instance based on configuration:
              - Full provider config: Use as-is
              - Shorthand type: Create default provider config
              """
              # If string shorthand is used, convert to default provider config
              from llmling_agent_config.providers import (
                  CallbackProviderConfig,
                  HumanProviderConfig,
                  LiteLLMProviderConfig,
                  PydanticAIProviderConfig,
              )
      
              provider_config = self.provider
              if isinstance(provider_config, str):
                  match provider_config:
                      case "pydantic_ai":
                          provider_config = PydanticAIProviderConfig(model=self.model)
                      case "human":
                          provider_config = HumanProviderConfig()
                      case "litellm":
                          provider_config = LiteLLMProviderConfig(
                              model=self.model if isinstance(self.model, str) else None
                          )
                      case _:
                          try:
                              fn = import_callable(provider_config)
                              provider_config = CallbackProviderConfig(fn=fn)
                          except Exception:  # noqa: BLE001
                              msg = f"Invalid provider type: {provider_config}"
                              raise ValueError(msg)  # noqa: B904
      
              # Create provider instance from config
              return provider_config.get_provider()
      
          def render_system_prompts(self, context: dict[str, Any] | None = None) -> list[str]:
              """Render system prompts with context."""
              if not context:
                  # Default context
                  context = {"name": self.name, "id": 1, "model": self.model}
              return [render_prompt(p, {"agent": context}) for p in self.system_prompts]
      
          def get_config(self) -> Config:
              """Get configuration for this agent."""
              match self.environment:
                  case None:
                      # Create minimal config
                      caps = LLMCapabilitiesConfig()
                      global_settings = GlobalSettings(llm_capabilities=caps)
                      return Config(global_settings=global_settings)
                  case str() as path:
                      # Backward compatibility: treat as file path
                      resolved = self._resolve_environment_path(path, self.config_file_path)
                      return Config.from_file(resolved)
                  case FileEnvironment(uri=uri) as env:
                      # Handle FileEnvironment instance
                      resolved = env.get_file_path()
                      return Config.from_file(resolved)
                  case {"type": "file", "uri": uri}:
                      # Handle raw dict matching file environment structure
                      return Config.from_file(uri)
                  case {"type": "inline", "config": config}:
                      return config
                  case InlineEnvironment() as config:
                      return config
                  case _:
                      msg = f"Invalid environment configuration: {self.environment}"
                      raise ValueError(msg)
      
          def get_environment_path(self) -> str | None:
              """Get environment file path if available."""
              match self.environment:
                  case str() as path:
                      return self._resolve_environment_path(path, self.config_file_path)
                  case {"type": "file", "uri": uri} | FileEnvironment(uri=uri):
                      return uri
                  case _:
                      return None
      
          @staticmethod
          def _resolve_environment_path(env: str, config_file_path: str | None = None) -> str:
              """Resolve environment path from config store or relative path."""
              from upath import UPath
      
              try:
                  config_store = ConfigStore()
                  return config_store.get_config(env)
              except KeyError:
                  if config_file_path:
                      base_dir = UPath(config_file_path).parent
                      return str(base_dir / env)
                  return env
      

      avatar class-attribute instance-attribute

      avatar: str | None = None
      

      URL or path to agent's avatar image

      capabilities class-attribute instance-attribute

      capabilities: Capabilities = Field(default_factory=Capabilities)
      

      Current agent's capabilities.

      config_file_path class-attribute instance-attribute

      config_file_path: str | None = None
      

      Config file path for resolving environment.

      debug class-attribute instance-attribute

      debug: bool = False
      

      Enable debug output for this agent.

      end_strategy class-attribute instance-attribute

      end_strategy: EndStrategy = 'early'
      

      The strategy for handling multiple tool calls when a final result is found

      environment class-attribute instance-attribute

      environment: str | AgentEnvironment | None = None
      

      Environments configuration (path or object)

      inherits class-attribute instance-attribute

      inherits: str | None = None
      

      Name of agent config to inherit from

      knowledge class-attribute instance-attribute

      knowledge: Knowledge | None = None
      

      Knowledge sources for this agent.

      library_system_prompts class-attribute instance-attribute

      library_system_prompts: list[str] = Field(default_factory=list)
      

      System prompts for the agent from the library

      model class-attribute instance-attribute

      model: str | AnyModelConfig | None = None
      

      The model to use for this agent. Can be either a simple model name string (e.g. 'openai:gpt-4') or a structured model definition.

      provider class-attribute instance-attribute

      provider: ProviderConfig | ProviderName = 'pydantic_ai'
      

      Provider configuration or shorthand type

      requires_tool_confirmation class-attribute instance-attribute

      requires_tool_confirmation: ToolConfirmationMode = 'per_tool'
      

      How to handle tool confirmation: - "always": Always require confirmation for all tools - "never": Never require confirmation (ignore tool settings) - "per_tool": Use individual tool settings

      result_retries class-attribute instance-attribute

      result_retries: int | None = None
      

      Max retries for result validation

      result_tool_description class-attribute instance-attribute

      result_tool_description: str | None = None
      

      Custom description for the result tool

      result_tool_name class-attribute instance-attribute

      result_tool_name: str = 'final_result'
      

      Name of the tool used for structured responses

      result_type class-attribute instance-attribute

      result_type: str | ResponseDefinition | None = None
      

      Name of the response definition to use

      retries class-attribute instance-attribute

      retries: int = 1
      

      Number of retries for failed operations (maps to pydantic-ai's retries)

      session class-attribute instance-attribute

      session: str | SessionQuery | MemoryConfig | None = None
      

      Session configuration for conversation recovery.

      system_prompts class-attribute instance-attribute

      system_prompts: list[str] = Field(default_factory=list)
      

      System prompts for the agent

      tools class-attribute instance-attribute

      tools: list[ToolConfig | str] = Field(default_factory=list)
      

      A list of tools to register with this agent.

      toolsets class-attribute instance-attribute

      toolsets: list[ToolsetConfig] = Field(default_factory=list)
      

      Toolset configurations for extensible tool collections.

      user_prompts class-attribute instance-attribute

      user_prompts: list[str] = Field(default_factory=list)
      

      Default user prompts for the agent

      workers class-attribute instance-attribute

      workers: list[WorkerConfig] = Field(default_factory=list)
      

      Worker agents which will be available as tools.

      _resolve_environment_path staticmethod

      _resolve_environment_path(env: str, config_file_path: str | None = None) -> str
      

      Resolve environment path from config store or relative path.

      Source code in src/llmling_agent/models/agents.py
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      @staticmethod
      def _resolve_environment_path(env: str, config_file_path: str | None = None) -> str:
          """Resolve environment path from config store or relative path."""
          from upath import UPath
      
          try:
              config_store = ConfigStore()
              return config_store.get_config(env)
          except KeyError:
              if config_file_path:
                  base_dir = UPath(config_file_path).parent
                  return str(base_dir / env)
              return env
      

      get_config

      get_config() -> Config
      

      Get configuration for this agent.

      Source code in src/llmling_agent/models/agents.py
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      def get_config(self) -> Config:
          """Get configuration for this agent."""
          match self.environment:
              case None:
                  # Create minimal config
                  caps = LLMCapabilitiesConfig()
                  global_settings = GlobalSettings(llm_capabilities=caps)
                  return Config(global_settings=global_settings)
              case str() as path:
                  # Backward compatibility: treat as file path
                  resolved = self._resolve_environment_path(path, self.config_file_path)
                  return Config.from_file(resolved)
              case FileEnvironment(uri=uri) as env:
                  # Handle FileEnvironment instance
                  resolved = env.get_file_path()
                  return Config.from_file(resolved)
              case {"type": "file", "uri": uri}:
                  # Handle raw dict matching file environment structure
                  return Config.from_file(uri)
              case {"type": "inline", "config": config}:
                  return config
              case InlineEnvironment() as config:
                  return config
              case _:
                  msg = f"Invalid environment configuration: {self.environment}"
                  raise ValueError(msg)
      

      get_environment_path

      get_environment_path() -> str | None
      

      Get environment file path if available.

      Source code in src/llmling_agent/models/agents.py
      331
      332
      333
      334
      335
      336
      337
      338
      339
      def get_environment_path(self) -> str | None:
          """Get environment file path if available."""
          match self.environment:
              case str() as path:
                  return self._resolve_environment_path(path, self.config_file_path)
              case {"type": "file", "uri": uri} | FileEnvironment(uri=uri):
                  return uri
              case _:
                  return None
      

      get_provider

      get_provider() -> AgentProvider
      

      Get resolved provider instance.

      Creates provider instance based on configuration: - Full provider config: Use as-is - Shorthand type: Create default provider config

      Source code in src/llmling_agent/models/agents.py
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      def get_provider(self) -> AgentProvider:
          """Get resolved provider instance.
      
          Creates provider instance based on configuration:
          - Full provider config: Use as-is
          - Shorthand type: Create default provider config
          """
          # If string shorthand is used, convert to default provider config
          from llmling_agent_config.providers import (
              CallbackProviderConfig,
              HumanProviderConfig,
              LiteLLMProviderConfig,
              PydanticAIProviderConfig,
          )
      
          provider_config = self.provider
          if isinstance(provider_config, str):
              match provider_config:
                  case "pydantic_ai":
                      provider_config = PydanticAIProviderConfig(model=self.model)
                  case "human":
                      provider_config = HumanProviderConfig()
                  case "litellm":
                      provider_config = LiteLLMProviderConfig(
                          model=self.model if isinstance(self.model, str) else None
                      )
                  case _:
                      try:
                          fn = import_callable(provider_config)
                          provider_config = CallbackProviderConfig(fn=fn)
                      except Exception:  # noqa: BLE001
                          msg = f"Invalid provider type: {provider_config}"
                          raise ValueError(msg)  # noqa: B904
      
          # Create provider instance from config
          return provider_config.get_provider()
      

      get_session_config

      get_session_config() -> MemoryConfig
      

      Get resolved memory configuration.

      Source code in src/llmling_agent/models/agents.py
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      def get_session_config(self) -> MemoryConfig:
          """Get resolved memory configuration."""
          match self.session:
              case str() | UUID():
                  return MemoryConfig(session=SessionQuery(name=str(self.session)))
              case SessionQuery():
                  return MemoryConfig(session=self.session)
              case MemoryConfig():
                  return self.session
              case None:
                  return MemoryConfig()
      

      get_system_prompts

      get_system_prompts() -> list[BasePrompt]
      

      Get all system prompts as BasePrompts.

      Source code in src/llmling_agent/models/agents.py
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      def get_system_prompts(self) -> list[BasePrompt]:
          """Get all system prompts as BasePrompts."""
          prompts: list[BasePrompt] = []
          for prompt in self.system_prompts:
              match prompt:
                  case str():
                      # Convert string to StaticPrompt
                      static_prompt = StaticPrompt(
                          name="system",
                          description="System prompt",
                          messages=[PromptMessage(role="system", content=prompt)],
                      )
                      prompts.append(static_prompt)
                  case BasePrompt():
                      prompts.append(prompt)
          return prompts
      

      get_tool_provider

      get_tool_provider() -> ResourceProvider | None
      

      Get tool provider for this agent.

      Source code in src/llmling_agent/models/agents.py
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      def get_tool_provider(self) -> ResourceProvider | None:
          """Get tool provider for this agent."""
          from llmling_agent.tools.base import Tool
      
          # Create provider for static tools
          if not self.tools:
              return None
          static_tools: list[Tool] = []
          for tool_config in self.tools:
              try:
                  match tool_config:
                      case str():
                          if tool_config.startswith("crewai_tools"):
                              obj = import_class(tool_config)()
                              static_tools.append(Tool.from_crewai_tool(obj))
                          elif tool_config.startswith("langchain"):
                              obj = import_class(tool_config)()
                              static_tools.append(Tool.from_langchain_tool(obj))
                          else:
                              tool = Tool.from_callable(tool_config)
                              static_tools.append(tool)
                      case BaseToolConfig():
                          static_tools.append(tool_config.get_tool())
              except Exception:
                  logger.exception("Failed to load tool %r", tool_config)
                  continue
      
          return StaticResourceProvider(name="builtin", tools=static_tools)
      

      get_toolsets async

      get_toolsets() -> list[ResourceProvider]
      

      Get all resource providers for this agent.

      Source code in src/llmling_agent/models/agents.py
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      async def get_toolsets(self) -> list[ResourceProvider]:
          """Get all resource providers for this agent."""
          providers: list[ResourceProvider] = []
      
          # Add providers from toolsets
          for toolset_config in self.toolsets:
              try:
                  provider = toolset_config.get_provider()
                  providers.append(provider)
              except Exception as e:
                  logger.exception(
                      "Failed to create provider for toolset: %r", toolset_config
                  )
                  msg = f"Failed to create provider for toolset: {e}"
                  raise ValueError(msg) from e
      
          return providers
      

      handle_model_types classmethod

      handle_model_types(data: dict[str, Any]) -> dict[str, Any]
      

      Convert model inputs to appropriate format.

      Source code in src/llmling_agent/models/agents.py
      174
      175
      176
      177
      178
      179
      180
      181
      182
      @model_validator(mode="before")
      @classmethod
      def handle_model_types(cls, data: dict[str, Any]) -> dict[str, Any]:
          """Convert model inputs to appropriate format."""
          model = data.get("model")
          match model:
              case str():
                  data["model"] = {"type": "string", "identifier": model}
          return data
      

      is_structured

      is_structured() -> bool
      

      Check if this config defines a structured agent.

      Source code in src/llmling_agent/models/agents.py
      144
      145
      146
      def is_structured(self) -> bool:
          """Check if this config defines a structured agent."""
          return self.result_type is not None
      

      render_system_prompts

      render_system_prompts(context: dict[str, Any] | None = None) -> list[str]
      

      Render system prompts with context.

      Source code in src/llmling_agent/models/agents.py
      297
      298
      299
      300
      301
      302
      def render_system_prompts(self, context: dict[str, Any] | None = None) -> list[str]:
          """Render system prompts with context."""
          if not context:
              # Default context
              context = {"name": self.name, "id": 1, "model": self.model}
          return [render_prompt(p, {"agent": context}) for p in self.system_prompts]
      

      validate_result_type classmethod

      validate_result_type(data: dict[str, Any]) -> dict[str, Any]
      

      Convert result type and apply its settings.

      Source code in src/llmling_agent/models/agents.py
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      @model_validator(mode="before")
      @classmethod
      def validate_result_type(cls, data: dict[str, Any]) -> dict[str, Any]:
          """Convert result type and apply its settings."""
          result_type = data.get("result_type")
          if isinstance(result_type, dict):
              # Extract response-specific settings
              tool_name = result_type.pop("result_tool_name", None)
              tool_description = result_type.pop("result_tool_description", None)
              retries = result_type.pop("result_retries", None)
      
              # Convert remaining dict to ResponseDefinition
              if "type" not in result_type:
                  result_type["type"] = "inline"
              data["result_type"] = InlineResponseDefinition(**result_type)
      
              # Apply extracted settings to agent config
              if tool_name:
                  data["result_tool_name"] = tool_name
              if tool_description:
                  data["result_tool_description"] = tool_description
              if retries is not None:
                  data["result_retries"] = retries
      
          return data
      

      AgentsManifest

      Bases: ConfigModel

      Complete agent configuration manifest defining all available agents.

      This is the root configuration that: - Defines available response types (both inline and imported) - Configures all agent instances and their settings - Sets up custom role definitions and capabilities - Manages environment configurations

      A single manifest can define multiple agents that can work independently or collaborate through the orchestrator.

      Source code in src/llmling_agent/models/manifest.py
       47
       48
       49
       50
       51
       52
       53
       54
       55
       56
       57
       58
       59
       60
       61
       62
       63
       64
       65
       66
       67
       68
       69
       70
       71
       72
       73
       74
       75
       76
       77
       78
       79
       80
       81
       82
       83
       84
       85
       86
       87
       88
       89
       90
       91
       92
       93
       94
       95
       96
       97
       98
       99
      100
      101
      102
      103
      104
      105
      106
      107
      108
      109
      110
      111
      112
      113
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      182
      183
      184
      185
      186
      187
      188
      189
      190
      191
      192
      193
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      247
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      296
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      307
      308
      309
      310
      311
      312
      313
      314
      315
      316
      317
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      345
      346
      347
      348
      349
      350
      351
      352
      353
      354
      355
      356
      357
      358
      359
      360
      361
      362
      363
      364
      365
      366
      367
      368
      369
      370
      371
      372
      373
      374
      375
      376
      377
      378
      379
      380
      381
      382
      383
      384
      385
      386
      387
      388
      389
      390
      391
      392
      393
      394
      395
      396
      397
      398
      399
      400
      401
      402
      403
      404
      405
      406
      407
      408
      409
      410
      411
      412
      413
      414
      415
      416
      417
      418
      419
      420
      421
      422
      423
      424
      425
      426
      427
      428
      429
      430
      431
      432
      433
      434
      435
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451
      452
      453
      454
      455
      456
      457
      458
      459
      460
      461
      462
      463
      464
      465
      466
      467
      468
      469
      470
      471
      472
      473
      474
      475
      476
      477
      478
      479
      480
      481
      482
      483
      484
      485
      class AgentsManifest(ConfigModel):
          """Complete agent configuration manifest defining all available agents.
      
          This is the root configuration that:
          - Defines available response types (both inline and imported)
          - Configures all agent instances and their settings
          - Sets up custom role definitions and capabilities
          - Manages environment configurations
      
          A single manifest can define multiple agents that can work independently
          or collaborate through the orchestrator.
          """
      
          INHERIT: str | list[str] | None = None
          """Inheritance references."""
      
          resources: dict[str, ResourceConfig | str] = Field(default_factory=dict)
          """Resource configurations defining available filesystems.
      
          Supports both full config and URI shorthand:
              resources:
                docs: "file://./docs"  # shorthand
                data:  # full config
                  type: "source"
                  uri: "s3://bucket/data"
                  cached: true
          """
      
          ui: UIConfig = Field(default_factory=StdlibUIConfig)
          """UI configuration."""
      
          agents: dict[str, AgentConfig] = Field(default_factory=dict)
          """Mapping of agent IDs to their configurations"""
      
          teams: dict[str, TeamConfig] = Field(default_factory=dict)
          """Mapping of team IDs to their configurations"""
      
          storage: StorageConfig = Field(default_factory=StorageConfig)
          """Storage provider configuration."""
      
          observability: ObservabilityConfig = Field(default_factory=ObservabilityConfig)
          """Observability provider configuration."""
      
          conversion: ConversionConfig = Field(default_factory=ConversionConfig)
          """Document conversion configuration."""
      
          responses: dict[str, ResponseDefinition] = Field(default_factory=dict)
          """Mapping of response names to their definitions"""
      
          jobs: dict[str, Job] = Field(default_factory=dict)
          """Pre-defined jobs, ready to be used by nodes."""
      
          mcp_servers: list[str | MCPServerConfig] = Field(default_factory=list)
          """List of MCP server configurations:
      
          These MCP servers are used to provide tools and other resources to the nodes.
          """
          pool_server: PoolServerConfig = Field(default_factory=PoolServerConfig)
          """Pool server configuration.
      
          This MCP server configuration is used for the pool MCP server,
          which exposes pool functionality to other applications / clients."""
      
          prompts: PromptConfig = Field(default_factory=PromptConfig)
      
          model_config = ConfigDict(use_attribute_docstrings=True, extra="forbid")
      
          @model_validator(mode="before")
          @classmethod
          def normalize_workers(cls, data: dict[str, Any]) -> dict[str, Any]:
              """Convert string workers to appropriate WorkerConfig for all agents."""
              teams = data.get("teams", {})
              agents = data.get("agents", {})
      
              # Process workers for all agents that have them
              for agent_name, agent_config in agents.items():
                  if isinstance(agent_config, dict):
                      workers = agent_config.get("workers", [])
                  else:
                      workers = agent_config.workers
      
                  if workers:
                      normalized: list[BaseWorkerConfig] = []
      
                      for worker in workers:
                          match worker:
                              case str() as name:
                                  # Determine type based on presence in teams/agents
                                  if name in teams:
                                      normalized.append(TeamWorkerConfig(name=name))
                                  elif name in agents:
                                      normalized.append(AgentWorkerConfig(name=name))
                                  else:
                                      # Default to agent if type can't be determined
                                      normalized.append(AgentWorkerConfig(name=name))
      
                              case dict() as config:
                                  # If type is explicitly specified, use it
                                  if worker_type := config.get("type"):
                                      match worker_type:
                                          case "team":
                                              normalized.append(TeamWorkerConfig(**config))
                                          case "agent":
                                              normalized.append(AgentWorkerConfig(**config))
                                          case _:
                                              msg = f"Invalid worker type: {worker_type}"
                                              raise ValueError(msg)
                                  else:
                                      # Determine type based on worker name
                                      worker_name = config.get("name")
                                      if not worker_name:
                                          msg = "Worker config missing name"
                                          raise ValueError(msg)
      
                                      if worker_name in teams:
                                          normalized.append(TeamWorkerConfig(**config))
                                      else:
                                          normalized.append(AgentWorkerConfig(**config))
      
                              case BaseWorkerConfig():  # Already normalized
                                  normalized.append(worker)
      
                              case _:
                                  msg = f"Invalid worker configuration: {worker}"
                                  raise ValueError(msg)
      
                      if isinstance(agent_config, dict):
                          agent_config["workers"] = normalized
                      else:
                          # Need to create a new dict with updated workers
                          agent_dict = agent_config.model_dump()
                          agent_dict["workers"] = normalized
                          agents[agent_name] = agent_dict
      
              return data
      
          @cached_property
          def resource_registry(self) -> ResourceRegistry:
              """Get registry with all configured resources."""
              registry = ResourceRegistry()
              for name, config in self.resources.items():
                  if isinstance(config, str):
                      # Convert URI shorthand to SourceResourceConfig
                      config = SourceResourceConfig(uri=config)
                  registry.register_from_config(name, config)
              return registry
      
          def clone_agent_config(
              self,
              name: str,
              new_name: str | None = None,
              *,
              template_context: dict[str, Any] | None = None,
              **overrides: Any,
          ) -> str:
              """Create a copy of an agent configuration.
      
              Args:
                  name: Name of agent to clone
                  new_name: Optional new name (auto-generated if None)
                  template_context: Variables for template rendering
                  **overrides: Configuration overrides for the clone
      
              Returns:
                  Name of the new agent
      
              Raises:
                  KeyError: If original agent not found
                  ValueError: If new name already exists or if overrides invalid
              """
              if name not in self.agents:
                  msg = f"Agent {name} not found"
                  raise KeyError(msg)
      
              actual_name = new_name or f"{name}_copy_{len(self.agents)}"
              if actual_name in self.agents:
                  msg = f"Agent {actual_name} already exists"
                  raise ValueError(msg)
      
              # Deep copy the configuration
              config = self.agents[name].model_copy(deep=True)
      
              # Apply overrides
              for key, value in overrides.items():
                  if not hasattr(config, key):
                      msg = f"Invalid override: {key}"
                      raise ValueError(msg)
                  setattr(config, key, value)
      
              # Handle template rendering if context provided
              if template_context:
                  # Apply name from context if not explicitly overridden
                  if "name" in template_context and "name" not in overrides:
                      config.name = template_context["name"]
      
                  # Render system prompts
                  config.system_prompts = config.render_system_prompts(template_context)
      
              self.agents[actual_name] = config
              return actual_name
      
          @model_validator(mode="before")
          @classmethod
          def resolve_inheritance(cls, data: dict) -> dict:
              """Resolve agent inheritance chains."""
              nodes = data.get("agents", {})
              resolved: dict[str, dict] = {}
              seen: set[str] = set()
      
              def resolve_node(name: str) -> dict:
                  if name in resolved:
                      return resolved[name]
      
                  if name in seen:
                      msg = f"Circular inheritance detected: {name}"
                      raise ValueError(msg)
      
                  seen.add(name)
                  config = (
                      nodes[name].model_copy()
                      if hasattr(nodes[name], "model_copy")
                      else nodes[name].copy()
                  )
                  inherit = (
                      config.get("inherits") if isinstance(config, dict) else config.inherits
                  )
                  if inherit:
                      if inherit not in nodes:
                          msg = f"Parent agent {inherit} not found"
                          raise ValueError(msg)
      
                      # Get resolved parent config
                      parent = resolve_node(inherit)
                      # Merge parent with child (child overrides parent)
                      merged = parent.copy()
                      merged.update(config)
                      config = merged
      
                  seen.remove(name)
                  resolved[name] = config
                  return config
      
              # Resolve all nodes
              for name in nodes:
                  resolved[name] = resolve_node(name)
      
              # Update nodes with resolved configs
              data["agents"] = resolved
              return data
      
          @model_validator(mode="after")
          def set_instrument_libraries(self) -> Self:
              """Auto-set libraries to instrument based on used providers."""
              if (
                  not self.observability.enabled
                  or self.observability.instrument_libraries is not None
              ):
                  return self
              self.observability.instrument_libraries = list(self.get_used_providers())
              return self
      
          @property
          def node_names(self) -> list[str]:
              """Get list of all agent and team names."""
              return list(self.agents.keys()) + list(self.teams.keys())
      
          @property
          def nodes(self) -> dict[str, Any]:
              """Get all agent and team configurations."""
              return {**self.agents, **self.teams}
      
          def get_mcp_servers(self) -> list[MCPServerConfig]:
              """Get processed MCP server configurations.
      
              Converts string entries to StdioMCPServerConfig configs by splitting
              into command and arguments.
      
              Returns:
                  List of MCPServerConfig instances
      
              Raises:
                  ValueError: If string entry is empty
              """
              configs: list[MCPServerConfig] = []
      
              for server in self.mcp_servers:
                  match server:
                      case str():
                          parts = server.split()
                          if not parts:
                              msg = "Empty MCP server command"
                              raise ValueError(msg)
      
                          configs.append(StdioMCPServerConfig(command=parts[0], args=parts[1:]))
                      case BaseMCPServerConfig():
                          configs.append(server)
      
              return configs
      
          @cached_property
          def prompt_manager(self) -> PromptManager:
              """Get prompt manager for this manifest."""
              from llmling_agent.prompts.manager import PromptManager
      
              return PromptManager(self.prompts)
      
          # @model_validator(mode="after")
          # def validate_response_types(self) -> AgentsManifest:
          #     """Ensure all agent result_types exist in responses or are inline."""
          #     for agent_id, agent in self.agents.items():
          #         if (
          #             isinstance(agent.result_type, str)
          #             and agent.result_type not in self.responses
          #         ):
          #             msg = f"'{agent.result_type=}' for '{agent_id=}' not found in responses"
          #             raise ValueError(msg)
          #     return self
      
          def get_agent[TAgentDeps](
              self, name: str, deps: TAgentDeps | None = None
          ) -> AnyAgent[TAgentDeps, Any]:
              from llmling import RuntimeConfig
      
              from llmling_agent import Agent, AgentContext
      
              config = self.agents[name]
              # Create runtime without async context
              cfg = config.get_config()
              runtime = RuntimeConfig.from_config(cfg)
      
              # Create context with config path and capabilities
              context = AgentContext[TAgentDeps](
                  node_name=name,
                  data=deps,
                  capabilities=config.capabilities,
                  definition=self,
                  config=config,
                  runtime=runtime,
                  # pool=self,
                  # confirmation_callback=confirmation_callback,
              )
      
              sys_prompts = config.system_prompts.copy()
              # Library prompts
              if config.library_system_prompts:
                  for prompt_ref in config.library_system_prompts:
                      try:
                          content = self.prompt_manager.get_sync(prompt_ref)
                          sys_prompts.append(content)
                      except Exception as e:
                          msg = f"Failed to load library prompt {prompt_ref!r} for agent {name}"
                          logger.exception(msg)
                          raise ValueError(msg) from e
              # Create agent with runtime and context
              agent = Agent[Any](
                  runtime=runtime,
                  context=context,
                  provider=config.get_provider(),
                  system_prompt=sys_prompts,
                  name=name,
                  description=config.description,
                  retries=config.retries,
                  session=config.get_session_config(),
                  result_retries=config.result_retries,
                  end_strategy=config.end_strategy,
                  capabilities=config.capabilities,
                  debug=config.debug,
                  # name=config.name or name,
              )
              if result_type := self.get_result_type(name):
                  return agent.to_structured(result_type)
              return agent
      
          def get_used_providers(self) -> set[str]:
              """Get all providers configured in this manifest."""
              providers = set[str]()
      
              for agent_config in self.agents.values():
                  match agent_config.provider:
                      case "pydantic_ai":
                          providers.add("pydantic_ai")
                      case "litellm":
                          providers.add("litellm")
                      case BaseProviderConfig():
                          providers.add(agent_config.provider.type)
              return providers
      
          @classmethod
          def from_file(cls, path: StrPath) -> Self:
              """Load agent configuration from YAML file.
      
              Args:
                  path: Path to the configuration file
      
              Returns:
                  Loaded agent definition
      
              Raises:
                  ValueError: If loading fails
              """
              import yamling
      
              try:
                  data = yamling.load_yaml_file(path, resolve_inherit=True)
                  agent_def = cls.model_validate(data)
                  # Update all agents with the config file path and ensure names
                  agents = {
                      name: config.model_copy(update={"config_file_path": str(path)})
                      for name, config in agent_def.agents.items()
                  }
                  return agent_def.model_copy(update={"agents": agents})
              except Exception as exc:
                  msg = f"Failed to load agent config from {path}"
                  raise ValueError(msg) from exc
      
          @cached_property
          def pool(self) -> AgentPool:
              """Create an agent pool from this manifest.
      
              Returns:
                  Configured agent pool
              """
              from llmling_agent import AgentPool
      
              return AgentPool(manifest=self)
      
          def get_result_type(self, agent_name: str) -> type[Any] | None:
              """Get the resolved result type for an agent.
      
              Returns None if no result type is configured.
              """
              agent_config = self.agents[agent_name]
              if not agent_config.result_type:
                  return None
              logger.debug("Building response model for %r", agent_config.result_type)
              if isinstance(agent_config.result_type, str):
                  response_def = self.responses[agent_config.result_type]
                  return response_def.create_model()  # type: ignore
              return agent_config.result_type.create_model()  # type: ignore
      

      INHERIT class-attribute instance-attribute

      INHERIT: str | list[str] | None = None
      

      Inheritance references.

      agents class-attribute instance-attribute

      agents: dict[str, AgentConfig] = Field(default_factory=dict)
      

      Mapping of agent IDs to their configurations

      conversion class-attribute instance-attribute

      conversion: ConversionConfig = Field(default_factory=ConversionConfig)
      

      Document conversion configuration.

      jobs class-attribute instance-attribute

      jobs: dict[str, Job] = Field(default_factory=dict)
      

      Pre-defined jobs, ready to be used by nodes.

      mcp_servers class-attribute instance-attribute

      mcp_servers: list[str | MCPServerConfig] = Field(default_factory=list)
      

      List of MCP server configurations:

      These MCP servers are used to provide tools and other resources to the nodes.

      node_names property

      node_names: list[str]
      

      Get list of all agent and team names.

      nodes property

      nodes: dict[str, Any]
      

      Get all agent and team configurations.

      observability class-attribute instance-attribute

      observability: ObservabilityConfig = Field(default_factory=ObservabilityConfig)
      

      Observability provider configuration.

      pool cached property

      pool: AgentPool
      

      Create an agent pool from this manifest.

      Returns:

      Type Description
      AgentPool

      Configured agent pool

      pool_server class-attribute instance-attribute

      pool_server: PoolServerConfig = Field(default_factory=PoolServerConfig)
      

      Pool server configuration.

      This MCP server configuration is used for the pool MCP server, which exposes pool functionality to other applications / clients.

      prompt_manager cached property

      prompt_manager: PromptManager
      

      Get prompt manager for this manifest.

      resource_registry cached property

      resource_registry: ResourceRegistry
      

      Get registry with all configured resources.

      resources class-attribute instance-attribute

      resources: dict[str, ResourceConfig | str] = Field(default_factory=dict)
      

      Resource configurations defining available filesystems.

      Supports both full config and URI shorthand

      resources: docs: "file://./docs" # shorthand data: # full config type: "source" uri: "s3://bucket/data" cached: true

      responses class-attribute instance-attribute

      responses: dict[str, ResponseDefinition] = Field(default_factory=dict)
      

      Mapping of response names to their definitions

      storage class-attribute instance-attribute

      storage: StorageConfig = Field(default_factory=StorageConfig)
      

      Storage provider configuration.

      teams class-attribute instance-attribute

      teams: dict[str, TeamConfig] = Field(default_factory=dict)
      

      Mapping of team IDs to their configurations

      ui class-attribute instance-attribute

      ui: UIConfig = Field(default_factory=StdlibUIConfig)
      

      UI configuration.

      clone_agent_config

      clone_agent_config(
          name: str,
          new_name: str | None = None,
          *,
          template_context: dict[str, Any] | None = None,
          **overrides: Any,
      ) -> str
      

      Create a copy of an agent configuration.

      Parameters:

      Name Type Description Default
      name str

      Name of agent to clone

      required
      new_name str | None

      Optional new name (auto-generated if None)

      None
      template_context dict[str, Any] | None

      Variables for template rendering

      None
      **overrides Any

      Configuration overrides for the clone

      {}

      Returns:

      Type Description
      str

      Name of the new agent

      Raises:

      Type Description
      KeyError

      If original agent not found

      ValueError

      If new name already exists or if overrides invalid

      Source code in src/llmling_agent/models/manifest.py
      194
      195
      196
      197
      198
      199
      200
      201
      202
      203
      204
      205
      206
      207
      208
      209
      210
      211
      212
      213
      214
      215
      216
      217
      218
      219
      220
      221
      222
      223
      224
      225
      226
      227
      228
      229
      230
      231
      232
      233
      234
      235
      236
      237
      238
      239
      240
      241
      242
      243
      244
      245
      246
      def clone_agent_config(
          self,
          name: str,
          new_name: str | None = None,
          *,
          template_context: dict[str, Any] | None = None,
          **overrides: Any,
      ) -> str:
          """Create a copy of an agent configuration.
      
          Args:
              name: Name of agent to clone
              new_name: Optional new name (auto-generated if None)
              template_context: Variables for template rendering
              **overrides: Configuration overrides for the clone
      
          Returns:
              Name of the new agent
      
          Raises:
              KeyError: If original agent not found
              ValueError: If new name already exists or if overrides invalid
          """
          if name not in self.agents:
              msg = f"Agent {name} not found"
              raise KeyError(msg)
      
          actual_name = new_name or f"{name}_copy_{len(self.agents)}"
          if actual_name in self.agents:
              msg = f"Agent {actual_name} already exists"
              raise ValueError(msg)
      
          # Deep copy the configuration
          config = self.agents[name].model_copy(deep=True)
      
          # Apply overrides
          for key, value in overrides.items():
              if not hasattr(config, key):
                  msg = f"Invalid override: {key}"
                  raise ValueError(msg)
              setattr(config, key, value)
      
          # Handle template rendering if context provided
          if template_context:
              # Apply name from context if not explicitly overridden
              if "name" in template_context and "name" not in overrides:
                  config.name = template_context["name"]
      
              # Render system prompts
              config.system_prompts = config.render_system_prompts(template_context)
      
          self.agents[actual_name] = config
          return actual_name
      

      from_file classmethod

      from_file(path: StrPath) -> Self
      

      Load agent configuration from YAML file.

      Parameters:

      Name Type Description Default
      path StrPath

      Path to the configuration file

      required

      Returns:

      Type Description
      Self

      Loaded agent definition

      Raises:

      Type Description
      ValueError

      If loading fails

      Source code in src/llmling_agent/models/manifest.py
      434
      435
      436
      437
      438
      439
      440
      441
      442
      443
      444
      445
      446
      447
      448
      449
      450
      451
      452
      453
      454
      455
      456
      457
      458
      459
      460
      @classmethod
      def from_file(cls, path: StrPath) -> Self:
          """Load agent configuration from YAML file.
      
          Args:
              path: Path to the configuration file
      
          Returns:
              Loaded agent definition
      
          Raises:
              ValueError: If loading fails
          """
          import yamling
      
          try:
              data = yamling.load_yaml_file(path, resolve_inherit=True)
              agent_def = cls.model_validate(data)
              # Update all agents with the config file path and ensure names
              agents = {
                  name: config.model_copy(update={"config_file_path": str(path)})
                  for name, config in agent_def.agents.items()
              }
              return agent_def.model_copy(update={"agents": agents})
          except Exception as exc:
              msg = f"Failed to load agent config from {path}"
              raise ValueError(msg) from exc
      

      get_mcp_servers

      get_mcp_servers() -> list[MCPServerConfig]
      

      Get processed MCP server configurations.

      Converts string entries to StdioMCPServerConfig configs by splitting into command and arguments.

      Returns:

      Type Description
      list[MCPServerConfig]

      List of MCPServerConfig instances

      Raises:

      Type Description
      ValueError

      If string entry is empty

      Source code in src/llmling_agent/models/manifest.py
      318
      319
      320
      321
      322
      323
      324
      325
      326
      327
      328
      329
      330
      331
      332
      333
      334
      335
      336
      337
      338
      339
      340
      341
      342
      343
      344
      def get_mcp_servers(self) -> list[MCPServerConfig]:
          """Get processed MCP server configurations.
      
          Converts string entries to StdioMCPServerConfig configs by splitting
          into command and arguments.
      
          Returns:
              List of MCPServerConfig instances
      
          Raises:
              ValueError: If string entry is empty
          """
          configs: list[MCPServerConfig] = []
      
          for server in self.mcp_servers:
              match server:
                  case str():
                      parts = server.split()
                      if not parts:
                          msg = "Empty MCP server command"
                          raise ValueError(msg)
      
                      configs.append(StdioMCPServerConfig(command=parts[0], args=parts[1:]))
                  case BaseMCPServerConfig():
                      configs.append(server)
      
          return configs
      

      get_result_type

      get_result_type(agent_name: str) -> type[Any] | None
      

      Get the resolved result type for an agent.

      Returns None if no result type is configured.

      Source code in src/llmling_agent/models/manifest.py
      473
      474
      475
      476
      477
      478
      479
      480
      481
      482
      483
      484
      485
      def get_result_type(self, agent_name: str) -> type[Any] | None:
          """Get the resolved result type for an agent.
      
          Returns None if no result type is configured.
          """
          agent_config = self.agents[agent_name]
          if not agent_config.result_type:
              return None
          logger.debug("Building response model for %r", agent_config.result_type)
          if isinstance(agent_config.result_type, str):
              response_def = self.responses[agent_config.result_type]
              return response_def.create_model()  # type: ignore
          return agent_config.result_type.create_model()  # type: ignore
      

      get_used_providers

      get_used_providers() -> set[str]
      

      Get all providers configured in this manifest.

      Source code in src/llmling_agent/models/manifest.py
      420
      421
      422
      423
      424
      425
      426
      427
      428
      429
      430
      431
      432
      def get_used_providers(self) -> set[str]:
          """Get all providers configured in this manifest."""
          providers = set[str]()
      
          for agent_config in self.agents.values():
              match agent_config.provider:
                  case "pydantic_ai":
                      providers.add("pydantic_ai")
                  case "litellm":
                      providers.add("litellm")
                  case BaseProviderConfig():
                      providers.add(agent_config.provider.type)
          return providers
      

      normalize_workers classmethod

      normalize_workers(data: dict[str, Any]) -> dict[str, Any]
      

      Convert string workers to appropriate WorkerConfig for all agents.

      Source code in src/llmling_agent/models/manifest.py
      114
      115
      116
      117
      118
      119
      120
      121
      122
      123
      124
      125
      126
      127
      128
      129
      130
      131
      132
      133
      134
      135
      136
      137
      138
      139
      140
      141
      142
      143
      144
      145
      146
      147
      148
      149
      150
      151
      152
      153
      154
      155
      156
      157
      158
      159
      160
      161
      162
      163
      164
      165
      166
      167
      168
      169
      170
      171
      172
      173
      174
      175
      176
      177
      178
      179
      180
      181
      @model_validator(mode="before")
      @classmethod
      def normalize_workers(cls, data: dict[str, Any]) -> dict[str, Any]:
          """Convert string workers to appropriate WorkerConfig for all agents."""
          teams = data.get("teams", {})
          agents = data.get("agents", {})
      
          # Process workers for all agents that have them
          for agent_name, agent_config in agents.items():
              if isinstance(agent_config, dict):
                  workers = agent_config.get("workers", [])
              else:
                  workers = agent_config.workers
      
              if workers:
                  normalized: list[BaseWorkerConfig] = []
      
                  for worker in workers:
                      match worker:
                          case str() as name:
                              # Determine type based on presence in teams/agents
                              if name in teams:
                                  normalized.append(TeamWorkerConfig(name=name))
                              elif name in agents:
                                  normalized.append(AgentWorkerConfig(name=name))
                              else:
                                  # Default to agent if type can't be determined
                                  normalized.append(AgentWorkerConfig(name=name))
      
                          case dict() as config:
                              # If type is explicitly specified, use it
                              if worker_type := config.get("type"):
                                  match worker_type:
                                      case "team":
                                          normalized.append(TeamWorkerConfig(**config))
                                      case "agent":
                                          normalized.append(AgentWorkerConfig(**config))
                                      case _:
                                          msg = f"Invalid worker type: {worker_type}"
                                          raise ValueError(msg)
                              else:
                                  # Determine type based on worker name
                                  worker_name = config.get("name")
                                  if not worker_name:
                                      msg = "Worker config missing name"
                                      raise ValueError(msg)
      
                                  if worker_name in teams:
                                      normalized.append(TeamWorkerConfig(**config))
                                  else:
                                      normalized.append(AgentWorkerConfig(**config))
      
                          case BaseWorkerConfig():  # Already normalized
                              normalized.append(worker)
      
                          case _:
                              msg = f"Invalid worker configuration: {worker}"
                              raise ValueError(msg)
      
                  if isinstance(agent_config, dict):
                      agent_config["workers"] = normalized
                  else:
                      # Need to create a new dict with updated workers
                      agent_dict = agent_config.model_dump()
                      agent_dict["workers"] = normalized
                      agents[agent_name] = agent_dict
      
          return data
      

      resolve_inheritance classmethod

      resolve_inheritance(data: dict) -> dict
      

      Resolve agent inheritance chains.

      Source code in src/llmling_agent/models/manifest.py
      248
      249
      250
      251
      252
      253
      254
      255
      256
      257
      258
      259
      260
      261
      262
      263
      264
      265
      266
      267
      268
      269
      270
      271
      272
      273
      274
      275
      276
      277
      278
      279
      280
      281
      282
      283
      284
      285
      286
      287
      288
      289
      290
      291
      292
      293
      294
      295
      @model_validator(mode="before")
      @classmethod
      def resolve_inheritance(cls, data: dict) -> dict:
          """Resolve agent inheritance chains."""
          nodes = data.get("agents", {})
          resolved: dict[str, dict] = {}
          seen: set[str] = set()
      
          def resolve_node(name: str) -> dict:
              if name in resolved:
                  return resolved[name]
      
              if name in seen:
                  msg = f"Circular inheritance detected: {name}"
                  raise ValueError(msg)
      
              seen.add(name)
              config = (
                  nodes[name].model_copy()
                  if hasattr(nodes[name], "model_copy")
                  else nodes[name].copy()
              )
              inherit = (
                  config.get("inherits") if isinstance(config, dict) else config.inherits
              )
              if inherit:
                  if inherit not in nodes:
                      msg = f"Parent agent {inherit} not found"
                      raise ValueError(msg)
      
                  # Get resolved parent config
                  parent = resolve_node(inherit)
                  # Merge parent with child (child overrides parent)
                  merged = parent.copy()
                  merged.update(config)
                  config = merged
      
              seen.remove(name)
              resolved[name] = config
              return config
      
          # Resolve all nodes
          for name in nodes:
              resolved[name] = resolve_node(name)
      
          # Update nodes with resolved configs
          data["agents"] = resolved
          return data
      

      set_instrument_libraries

      set_instrument_libraries() -> Self
      

      Auto-set libraries to instrument based on used providers.

      Source code in src/llmling_agent/models/manifest.py
      297
      298
      299
      300
      301
      302
      303
      304
      305
      306
      @model_validator(mode="after")
      def set_instrument_libraries(self) -> Self:
          """Auto-set libraries to instrument based on used providers."""
          if (
              not self.observability.enabled
              or self.observability.instrument_libraries is not None
          ):
              return self
          self.observability.instrument_libraries = list(self.get_used_providers())
          return self