Skip to content

StructuredAgent

Base classes

Name Children Inherits
MessageNode
llmling_agent.messaging.messagenode
Base class for all message processing nodes.
Generic
typing
Abstract base class for generic types.

⋔ Inheritance diagram

graph TD
  94004561892528["structured.StructuredAgent"]
  94004562236768["messagenode.MessageNode"]
  94004562935056["messageemitter.MessageEmitter"]
  94004562981872["tasks.TaskManagerMixin"]
  140104485245120["builtins.object"]
  94004506135904["abc.ABC"]
  94004505984624["typing.Generic"]
  94004562236768 --> 94004561892528
  94004562935056 --> 94004562236768
  94004562981872 --> 94004562935056
  140104485245120 --> 94004562981872
  94004506135904 --> 94004562935056
  140104485245120 --> 94004506135904
  94004505984624 --> 94004562935056
  140104485245120 --> 94004505984624
  94004505984624 --> 94004562236768
  94004505984624 --> 94004561892528

🛈 DocStrings

Bases: MessageNode[TDeps, TResult]

Wrapper for Agent that enforces a specific result type.

This wrapper ensures the agent always returns results of the specified type. The type can be provided as: - A Python type for validation - A response definition name from the manifest - A complete response definition instance

Source code in src/llmling_agent/agent/structured.py
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
class StructuredAgent[TDeps, TResult](MessageNode[TDeps, TResult]):
    """Wrapper for Agent that enforces a specific result type.

    This wrapper ensures the agent always returns results of the specified type.
    The type can be provided as:
    - A Python type for validation
    - A response definition name from the manifest
    - A complete response definition instance
    """

    def __init__(
        self,
        agent: Agent[TDeps] | StructuredAgent[TDeps, TResult] | Callable[..., TResult],
        result_type: type[TResult] | str | ResponseDefinition,
        *,
        tool_name: str | None = None,
        tool_description: str | None = None,
    ):
        """Initialize structured agent wrapper.

        Args:
            agent: Base agent to wrap
            result_type: Expected result type:
                - BaseModel / dataclasses
                - Name of response definition in manifest
                - Complete response definition instance
            tool_name: Optional override for tool name
            tool_description: Optional override for tool description

        Raises:
            ValueError: If named response type not found in manifest
        """
        from llmling_agent.agent.agent import Agent

        logger.debug("StructuredAgent.run result_type = %s", result_type)
        match agent:
            case StructuredAgent():
                self._agent: Agent[TDeps] = agent._agent
            case Callable():
                self._agent = Agent[TDeps](provider=agent, name=agent.__name__)
            case Agent():
                self._agent = agent
            case _:
                msg = "Invalid agent type"
                raise ValueError(msg)

        super().__init__(name=self._agent.name)

        self._result_type = to_type(result_type)
        agent.set_result_type(result_type)

        match result_type:
            case type() | str():
                # For types and named definitions, use overrides if provided
                self._agent.set_result_type(
                    result_type,
                    tool_name=tool_name,
                    tool_description=tool_description,
                )
            case BaseResponseDefinition():
                # For response definitions, use as-is
                # (overrides don't apply to complete definitions)
                self._agent.set_result_type(result_type)

    async def __aenter__(self) -> Self:
        """Enter async context and set up MCP servers.

        Called when agent enters its async context. Sets up any configured
        MCP servers and their tools.
        """
        await self._agent.__aenter__()
        return self

    async def __aexit__(
        self,
        exc_type: type[BaseException] | None,
        exc_val: BaseException | None,
        exc_tb: TracebackType | None,
    ):
        """Exit async context."""
        await self._agent.__aexit__(exc_type, exc_val, exc_tb)

    def __and__(
        self, other: AnyAgent[Any, Any] | Team[Any] | ProcessorCallback[TResult]
    ) -> Team[TDeps]:
        return self._agent.__and__(other)

    def __or__(self, other: Agent | ProcessorCallback | BaseTeam) -> TeamRun:
        return self._agent.__or__(other)

    async def _run(
        self,
        *prompt: AnyPromptType | TResult,
        result_type: type[TResult] | None = None,
        model: ModelType = None,
        tool_choice: bool | str | list[str] = True,
        store_history: bool = True,
        message_id: str | None = None,
        conversation_id: str | None = None,
        wait_for_connections: bool | None = None,
    ) -> ChatMessage[TResult]:
        """Run with fixed result type.

        Args:
            prompt: Any prompt-compatible object or structured objects of type TResult
            result_type: Expected result type:
                - BaseModel / dataclasses
                - Name of response definition in manifest
                - Complete response definition instance
            model: Optional model override
            tool_choice: Control tool usage:
                - True: Allow all tools
                - False: No tools
                - str: Use specific tool
                - list[str]: Allow specific tools
            store_history: Whether the message exchange should be added to the
                           context window
            message_id: Optional message id for the returned message.
                        Automatically generated if not provided.
            conversation_id: Optional conversation id for the returned message.
            wait_for_connections: Whether to wait for all connections to complete
        """
        typ = result_type or self._result_type
        return await self._agent._run(
            *prompt,
            result_type=typ,
            model=model,
            store_history=store_history,
            tool_choice=tool_choice,
            message_id=message_id,
            conversation_id=conversation_id,
            wait_for_connections=wait_for_connections,
        )

    async def validate_against(
        self,
        prompt: str,
        criteria: type[TResult],
        **kwargs: Any,
    ) -> bool:
        """Check if agent's response satisfies stricter criteria."""
        result = await self.run(prompt, **kwargs)
        try:
            criteria.model_validate(result.content.model_dump())  # type: ignore
        except ValidationError:
            return False
        else:
            return True

    def __repr__(self) -> str:
        type_name = getattr(self._result_type, "__name__", str(self._result_type))
        return f"StructuredAgent({self._agent!r}, result_type={type_name})"

    def __prompt__(self) -> str:
        type_name = getattr(self._result_type, "__name__", str(self._result_type))
        base_info = self._agent.__prompt__()
        return f"{base_info}\nStructured output type: {type_name}"

    def __getattr__(self, name: str) -> Any:
        return getattr(self._agent, name)

    @property
    def context(self) -> AgentContext[TDeps]:
        return self._agent.context

    @context.setter
    def context(self, value: Any):
        self._agent.context = value

    @property
    def name(self) -> str:
        return self._agent.name

    @name.setter
    def name(self, value: str):
        self._agent.name = value

    @property
    def tools(self) -> ToolManager:
        return self._agent.tools

    @overload
    def to_structured(
        self,
        result_type: None,
        *,
        tool_name: str | None = None,
        tool_description: str | None = None,
    ) -> Agent[TDeps]: ...

    @overload
    def to_structured[TNewResult](
        self,
        result_type: type[TNewResult] | str | ResponseDefinition,
        *,
        tool_name: str | None = None,
        tool_description: str | None = None,
    ) -> StructuredAgent[TDeps, TNewResult]: ...

    def to_structured[TNewResult](
        self,
        result_type: type[TNewResult] | str | ResponseDefinition | None,
        *,
        tool_name: str | None = None,
        tool_description: str | None = None,
    ) -> Agent[TDeps] | StructuredAgent[TDeps, TNewResult]:
        if result_type is None:
            return self._agent

        return StructuredAgent(
            self._agent,
            result_type=result_type,
            tool_name=tool_name,
            tool_description=tool_description,
        )

    @property
    def stats(self) -> MessageStats:
        return self._agent.stats

    async def run_iter(
        self,
        *prompt_groups: Sequence[AnyPromptType | PIL.Image.Image | os.PathLike[str]],
        **kwargs: Any,
    ) -> AsyncIterator[ChatMessage[Any]]:
        """Forward run_iter to wrapped agent."""
        async for message in self._agent.run_iter(*prompt_groups, **kwargs):
            yield message

    async def run_job(
        self,
        job: Job[TDeps, TResult],
        *,
        store_history: bool = True,
        include_agent_tools: bool = True,
    ) -> ChatMessage[TResult]:
        """Execute a pre-defined job ensuring type compatibility.

        Args:
            job: Job configuration to execute
            store_history: Whether to add job execution to conversation history
            include_agent_tools: Whether to include agent's tools alongside job tools

        Returns:
            Task execution result

        Raises:
            JobError: If job execution fails or types don't match
            ValueError: If job configuration is invalid
        """
        from llmling_agent.tasks import JobError

        # Validate dependency requirement
        if job.required_dependency is not None:  # noqa: SIM102
            if not isinstance(self.context.data, job.required_dependency):
                msg = (
                    f"Agent dependencies ({type(self.context.data)}) "
                    f"don't match job requirement ({job.required_dependency})"
                )
                raise JobError(msg)

        # Validate return type requirement
        if job.required_return_type != self._result_type:
            msg = (
                f"Agent result type ({self._result_type}) "
                f"doesn't match job requirement ({job.required_return_type})"
            )
            raise JobError(msg)

        # Load task knowledge if provided
        if job.knowledge:
            # Add knowledge sources to context
            resources: list[Resource | str] = list(job.knowledge.paths) + list(
                job.knowledge.resources
            )
            for source in resources:
                await self.conversation.load_context_source(source)
            for prompt in job.knowledge.prompts:
                await self.conversation.load_context_source(prompt)

        try:
            # Register task tools temporarily
            tools = job.get_tools()

            # Use temporary tools
            with self._agent.tools.temporary_tools(
                tools, exclusive=not include_agent_tools
            ):
                # Execute job using StructuredAgent's run to maintain type safety
                return await self.run(await job.get_prompt(), store_history=store_history)

        except Exception as e:
            msg = f"Task execution failed: {e}"
            logger.exception(msg)
            raise JobError(msg) from e

    @classmethod
    def from_callback(
        cls,
        callback: ProcessorCallback[TResult],
        *,
        name: str | None = None,
        **kwargs: Any,
    ) -> StructuredAgent[None, TResult]:
        """Create a structured agent from a processing callback.

        Args:
            callback: Function to process messages. Can be:
                - sync or async
                - with or without context
                - with explicit return type
            name: Optional name for the agent
            **kwargs: Additional arguments for agent

        Example:
            ```python
            class AnalysisResult(BaseModel):
                sentiment: float
                topics: list[str]

            def analyze(msg: str) -> AnalysisResult:
                return AnalysisResult(sentiment=0.8, topics=["tech"])

            analyzer = StructuredAgent.from_callback(analyze)
            ```
        """
        from llmling_agent.agent.agent import Agent
        from llmling_agent_providers.callback import CallbackProvider

        name = name or callback.__name__ or "processor"
        provider = CallbackProvider(callback, name=name)
        agent = Agent[None](provider=provider, name=name, **kwargs)
        # Get return type from signature for validation
        hints = get_type_hints(callback)
        return_type = hints.get("return")

        # If async, unwrap from Awaitable
        if (
            return_type
            and hasattr(return_type, "__origin__")
            and return_type.__origin__ is Awaitable
        ):
            return_type = return_type.__args__[0]
        return StructuredAgent[None, TResult](agent, return_type or str)  # type: ignore

    def is_busy(self) -> bool:
        """Check if agent is currently processing tasks."""
        return bool(self._pending_tasks or self._background_task)

__aenter__ async

__aenter__() -> Self

Enter async context and set up MCP servers.

Called when agent enters its async context. Sets up any configured MCP servers and their tools.

Source code in src/llmling_agent/agent/structured.py
115
116
117
118
119
120
121
122
async def __aenter__(self) -> Self:
    """Enter async context and set up MCP servers.

    Called when agent enters its async context. Sets up any configured
    MCP servers and their tools.
    """
    await self._agent.__aenter__()
    return self

__aexit__ async

__aexit__(
    exc_type: type[BaseException] | None,
    exc_val: BaseException | None,
    exc_tb: TracebackType | None,
)

Exit async context.

Source code in src/llmling_agent/agent/structured.py
124
125
126
127
128
129
130
131
async def __aexit__(
    self,
    exc_type: type[BaseException] | None,
    exc_val: BaseException | None,
    exc_tb: TracebackType | None,
):
    """Exit async context."""
    await self._agent.__aexit__(exc_type, exc_val, exc_tb)

__init__

__init__(
    agent: Agent[TDeps] | StructuredAgent[TDeps, TResult] | Callable[..., TResult],
    result_type: type[TResult] | str | ResponseDefinition,
    *,
    tool_name: str | None = None,
    tool_description: str | None = None,
)

Initialize structured agent wrapper.

Parameters:

Name Type Description Default
agent Agent[TDeps] | StructuredAgent[TDeps, TResult] | Callable[..., TResult]

Base agent to wrap

required
result_type type[TResult] | str | ResponseDefinition

Expected result type: - BaseModel / dataclasses - Name of response definition in manifest - Complete response definition instance

required
tool_name str | None

Optional override for tool name

None
tool_description str | None

Optional override for tool description

None

Raises:

Type Description
ValueError

If named response type not found in manifest

Source code in src/llmling_agent/agent/structured.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def __init__(
    self,
    agent: Agent[TDeps] | StructuredAgent[TDeps, TResult] | Callable[..., TResult],
    result_type: type[TResult] | str | ResponseDefinition,
    *,
    tool_name: str | None = None,
    tool_description: str | None = None,
):
    """Initialize structured agent wrapper.

    Args:
        agent: Base agent to wrap
        result_type: Expected result type:
            - BaseModel / dataclasses
            - Name of response definition in manifest
            - Complete response definition instance
        tool_name: Optional override for tool name
        tool_description: Optional override for tool description

    Raises:
        ValueError: If named response type not found in manifest
    """
    from llmling_agent.agent.agent import Agent

    logger.debug("StructuredAgent.run result_type = %s", result_type)
    match agent:
        case StructuredAgent():
            self._agent: Agent[TDeps] = agent._agent
        case Callable():
            self._agent = Agent[TDeps](provider=agent, name=agent.__name__)
        case Agent():
            self._agent = agent
        case _:
            msg = "Invalid agent type"
            raise ValueError(msg)

    super().__init__(name=self._agent.name)

    self._result_type = to_type(result_type)
    agent.set_result_type(result_type)

    match result_type:
        case type() | str():
            # For types and named definitions, use overrides if provided
            self._agent.set_result_type(
                result_type,
                tool_name=tool_name,
                tool_description=tool_description,
            )
        case BaseResponseDefinition():
            # For response definitions, use as-is
            # (overrides don't apply to complete definitions)
            self._agent.set_result_type(result_type)

_run async

_run(
    *prompt: AnyPromptType | TResult,
    result_type: type[TResult] | None = None,
    model: ModelType = None,
    tool_choice: bool | str | list[str] = True,
    store_history: bool = True,
    message_id: str | None = None,
    conversation_id: str | None = None,
    wait_for_connections: bool | None = None,
) -> ChatMessage[TResult]

Run with fixed result type.

Parameters:

Name Type Description Default
prompt AnyPromptType | TResult

Any prompt-compatible object or structured objects of type TResult

()
result_type type[TResult] | None

Expected result type: - BaseModel / dataclasses - Name of response definition in manifest - Complete response definition instance

None
model ModelType

Optional model override

None
tool_choice bool | str | list[str]

Control tool usage: - True: Allow all tools - False: No tools - str: Use specific tool - list[str]: Allow specific tools

True
store_history bool

Whether the message exchange should be added to the context window

True
message_id str | None

Optional message id for the returned message. Automatically generated if not provided.

None
conversation_id str | None

Optional conversation id for the returned message.

None
wait_for_connections bool | None

Whether to wait for all connections to complete

None
Source code in src/llmling_agent/agent/structured.py
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
async def _run(
    self,
    *prompt: AnyPromptType | TResult,
    result_type: type[TResult] | None = None,
    model: ModelType = None,
    tool_choice: bool | str | list[str] = True,
    store_history: bool = True,
    message_id: str | None = None,
    conversation_id: str | None = None,
    wait_for_connections: bool | None = None,
) -> ChatMessage[TResult]:
    """Run with fixed result type.

    Args:
        prompt: Any prompt-compatible object or structured objects of type TResult
        result_type: Expected result type:
            - BaseModel / dataclasses
            - Name of response definition in manifest
            - Complete response definition instance
        model: Optional model override
        tool_choice: Control tool usage:
            - True: Allow all tools
            - False: No tools
            - str: Use specific tool
            - list[str]: Allow specific tools
        store_history: Whether the message exchange should be added to the
                       context window
        message_id: Optional message id for the returned message.
                    Automatically generated if not provided.
        conversation_id: Optional conversation id for the returned message.
        wait_for_connections: Whether to wait for all connections to complete
    """
    typ = result_type or self._result_type
    return await self._agent._run(
        *prompt,
        result_type=typ,
        model=model,
        store_history=store_history,
        tool_choice=tool_choice,
        message_id=message_id,
        conversation_id=conversation_id,
        wait_for_connections=wait_for_connections,
    )

from_callback classmethod

from_callback(
    callback: ProcessorCallback[TResult], *, name: str | None = None, **kwargs: Any
) -> StructuredAgent[None, TResult]

Create a structured agent from a processing callback.

Parameters:

Name Type Description Default
callback ProcessorCallback[TResult]

Function to process messages. Can be: - sync or async - with or without context - with explicit return type

required
name str | None

Optional name for the agent

None
**kwargs Any

Additional arguments for agent

{}
Example
class AnalysisResult(BaseModel):
    sentiment: float
    topics: list[str]

def analyze(msg: str) -> AnalysisResult:
    return AnalysisResult(sentiment=0.8, topics=["tech"])

analyzer = StructuredAgent.from_callback(analyze)
Source code in src/llmling_agent/agent/structured.py
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
@classmethod
def from_callback(
    cls,
    callback: ProcessorCallback[TResult],
    *,
    name: str | None = None,
    **kwargs: Any,
) -> StructuredAgent[None, TResult]:
    """Create a structured agent from a processing callback.

    Args:
        callback: Function to process messages. Can be:
            - sync or async
            - with or without context
            - with explicit return type
        name: Optional name for the agent
        **kwargs: Additional arguments for agent

    Example:
        ```python
        class AnalysisResult(BaseModel):
            sentiment: float
            topics: list[str]

        def analyze(msg: str) -> AnalysisResult:
            return AnalysisResult(sentiment=0.8, topics=["tech"])

        analyzer = StructuredAgent.from_callback(analyze)
        ```
    """
    from llmling_agent.agent.agent import Agent
    from llmling_agent_providers.callback import CallbackProvider

    name = name or callback.__name__ or "processor"
    provider = CallbackProvider(callback, name=name)
    agent = Agent[None](provider=provider, name=name, **kwargs)
    # Get return type from signature for validation
    hints = get_type_hints(callback)
    return_type = hints.get("return")

    # If async, unwrap from Awaitable
    if (
        return_type
        and hasattr(return_type, "__origin__")
        and return_type.__origin__ is Awaitable
    ):
        return_type = return_type.__args__[0]
    return StructuredAgent[None, TResult](agent, return_type or str)  # type: ignore

is_busy

is_busy() -> bool

Check if agent is currently processing tasks.

Source code in src/llmling_agent/agent/structured.py
396
397
398
def is_busy(self) -> bool:
    """Check if agent is currently processing tasks."""
    return bool(self._pending_tasks or self._background_task)

run_iter async

run_iter(
    *prompt_groups: Sequence[AnyPromptType | Image | PathLike[str]], **kwargs: Any
) -> AsyncIterator[ChatMessage[Any]]

Forward run_iter to wrapped agent.

Source code in src/llmling_agent/agent/structured.py
271
272
273
274
275
276
277
278
async def run_iter(
    self,
    *prompt_groups: Sequence[AnyPromptType | PIL.Image.Image | os.PathLike[str]],
    **kwargs: Any,
) -> AsyncIterator[ChatMessage[Any]]:
    """Forward run_iter to wrapped agent."""
    async for message in self._agent.run_iter(*prompt_groups, **kwargs):
        yield message

run_job async

run_job(
    job: Job[TDeps, TResult],
    *,
    store_history: bool = True,
    include_agent_tools: bool = True,
) -> ChatMessage[TResult]

Execute a pre-defined job ensuring type compatibility.

Parameters:

Name Type Description Default
job Job[TDeps, TResult]

Job configuration to execute

required
store_history bool

Whether to add job execution to conversation history

True
include_agent_tools bool

Whether to include agent's tools alongside job tools

True

Returns:

Type Description
ChatMessage[TResult]

Task execution result

Raises:

Type Description
JobError

If job execution fails or types don't match

ValueError

If job configuration is invalid

Source code in src/llmling_agent/agent/structured.py
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
async def run_job(
    self,
    job: Job[TDeps, TResult],
    *,
    store_history: bool = True,
    include_agent_tools: bool = True,
) -> ChatMessage[TResult]:
    """Execute a pre-defined job ensuring type compatibility.

    Args:
        job: Job configuration to execute
        store_history: Whether to add job execution to conversation history
        include_agent_tools: Whether to include agent's tools alongside job tools

    Returns:
        Task execution result

    Raises:
        JobError: If job execution fails or types don't match
        ValueError: If job configuration is invalid
    """
    from llmling_agent.tasks import JobError

    # Validate dependency requirement
    if job.required_dependency is not None:  # noqa: SIM102
        if not isinstance(self.context.data, job.required_dependency):
            msg = (
                f"Agent dependencies ({type(self.context.data)}) "
                f"don't match job requirement ({job.required_dependency})"
            )
            raise JobError(msg)

    # Validate return type requirement
    if job.required_return_type != self._result_type:
        msg = (
            f"Agent result type ({self._result_type}) "
            f"doesn't match job requirement ({job.required_return_type})"
        )
        raise JobError(msg)

    # Load task knowledge if provided
    if job.knowledge:
        # Add knowledge sources to context
        resources: list[Resource | str] = list(job.knowledge.paths) + list(
            job.knowledge.resources
        )
        for source in resources:
            await self.conversation.load_context_source(source)
        for prompt in job.knowledge.prompts:
            await self.conversation.load_context_source(prompt)

    try:
        # Register task tools temporarily
        tools = job.get_tools()

        # Use temporary tools
        with self._agent.tools.temporary_tools(
            tools, exclusive=not include_agent_tools
        ):
            # Execute job using StructuredAgent's run to maintain type safety
            return await self.run(await job.get_prompt(), store_history=store_history)

    except Exception as e:
        msg = f"Task execution failed: {e}"
        logger.exception(msg)
        raise JobError(msg) from e

validate_against async

validate_against(prompt: str, criteria: type[TResult], **kwargs: Any) -> bool

Check if agent's response satisfies stricter criteria.

Source code in src/llmling_agent/agent/structured.py
185
186
187
188
189
190
191
192
193
194
195
196
197
198
async def validate_against(
    self,
    prompt: str,
    criteria: type[TResult],
    **kwargs: Any,
) -> bool:
    """Check if agent's response satisfies stricter criteria."""
    result = await self.run(prompt, **kwargs)
    try:
        criteria.model_validate(result.content.model_dump())  # type: ignore
    except ValidationError:
        return False
    else:
        return True

Show source on GitHub