Models & Providers¶
In addition to the regular models, LLMling-Agent supports some special kinds of models provided by LLMling-models.
Human-Interaction Models¶
Models that facilitate human interaction and input:
Input Model¶
Basic console-based human input for testing and debugging:
agents:
reviewer:
model:
type: "input"
prompt_template: "👤 Please respond to: {prompt}"
show_system: true
input_prompt: "Your response: "
Note
This mechanism is similar to HumanProviders, but implemented at a different level. A HumanProvider has more "access" and is the more powerful way to take over an agent.
Remote Input Model¶
Connect to a remote human operator via REST or WebSocket:
agents:
remote_reviewer:
model:
type: "remote-input"
url: "ws://operator:8000/v1/chat/stream"
protocol: "websocket" # or "rest"
api_key: "your-api-key"
User Select Model¶
Let users interactively choose which model to use:
agents:
interactive:
model:
type: "user-select"
models: ["openai:gpt-4", "openai:gpt-3.5-turbo"]
prompt_template: "🤖 Choose model for: {prompt}"
input_prompt: "Enter model number (0-{max}): "
Multi-Models¶
Fallback Model¶
Try models in sequence until one succeeds:
agents:
resilient:
model:
type: "fallback"
models:
- "openai:gpt-4" # Try first
- "openai:gpt-3.5-turbo" # Fallback
- "anthropic:claude-2" # Last resort
Cost-Optimized Model¶
Select models based on budget constraints:
agents:
budget_aware:
model:
type: "cost-optimized"
models: ["openai:gpt-4", "openai:gpt-3.5-turbo"]
max_input_cost: 0.1 # USD per request
strategy: "best_within_budget" # or "cheapest_possible"
Token-Optimized Model¶
Select models based on context window requirements:
agents:
context_aware:
model:
type: "token-optimized"
models:
- "openai:gpt-4-32k" # 32k context
- "openai:gpt-4" # 8k context
strategy: "efficient" # or "maximum_context"
Delegation Model¶
Use a model to choose the most appropriate model:
agents:
smart_router:
model:
type: "delegation"
selector_model: "openai:gpt-4-turbo"
models: ["openai:gpt-4", "openai:gpt-3.5-turbo"]
selection_prompt: "Pick gpt-4 for complex tasks, gpt-3.5-turbo for simple queries."
Wrapper Models¶
AISuite Adapter¶
Use models from the AISuite library (limited functionality, no tool calls and structured output):
agents:
aisuite_agent:
model:
type: "aisuite"
model: "anthropic:claude-3-opus"
config:
anthropic:
api_key: "your-api-key"
LLM Adapter¶
Use models from the LLM library (limited functionality, no tool calls and structured output):
Import Model¶
Import and use custom model implementations: